Industry

Solutions Database

Novel methods for long-chain omega-3 fatty acid production

As the alternative seafood industry scales up, a low-cost and abundant source of long-chain omega-3 polyunsaturated fatty acids will become necessary. Several means of producing these compounds have been investigated and commercialized, but additional innovation is needed to build a robust and scalable supply chain. Methods that would benefit from additional research include precision fermentation and cell-free systems.

Solutions Database

Preventing oxidation of omega-3 fatty acids before and after addition to alternative seafood products

Deeper fundamental knowledge of the causes and prevention of oxidation of omega-3 fatty acids before, during, and after addition to alternative seafood products is needed to improve their nutritional and organoleptic properties. While several approaches to prevent oxidation of unsaturated lipids in conventional seafood products have been developed, antioxidation methods must be tailored to the formulations and processing of alternative seafood products, or perhaps new methods must be developed altogether.

Solutions Database

Understanding uptake and interconversion of omega-3 fatty acids by cultivated fish cells

Although fish are one of the best dietary sources of long-chain omega-3 fatty acids (FAs), these compounds are mostly bioaccumulated from a fish’s diet rather than synthesized de novo. Consistent with this, studies have found evidence of reduced omega-3 content in fish as a result of replacing fish-based feed with plant-based feed. Therefore, for cultivated fish to compete with conventionally-produced products, it will be necessary to identify cost-effective strategies for increasing the content of nutritionally-important omega-3 FAs in cultivated fish.

Solutions Database

Scaffolding development for culinary and biomechanical requirements of cultivated seafood

A number of published studies have focused on scaffolds for cultivated meat (see Related Efforts) yet, to our knowledge, no studies have specifically attempted to formulate scaffolds for fish or tested growth of fish cells on scaffolds developed for terrestrial meat. Because fish uniquely differ from terrestrial meat in structure, research aimed specifically at developing and testing scaffolds for fish products would advance the industry. Both scaffolding materials as well as methods for achieving the correct three-dimensional structure should be investigated.

Solutions Database

Building interdisciplinary university research centers of excellence

Interdisciplinary research is essential for tackling many of the complex problems facing today’s world. Though the number of research projects advancing alternative protein science has increased in recent years, this research has been conducted in a largely disjointed fashion with few centralized hubs for coordination. The field would benefit from dedicated interdisciplinary research centers to drive the science and technology needed to address our unsustainable food and agriculture system. University centers of excellence are essential to rallying researchers and industry partners to tackle complex questions facing the alternative protein field today.

Solutions Database

Fiber spinning innovations for improved plant protein texturization

Fibers from non-traditional texturization techniques like electrospinning, jet spinning, or blow spinning could impart texture throughout a product even if they don’t comprise the bulk of the end product, which may render these approaches economically viable for enhancing texture within a bulk product even at a relatively small scale.

Solutions Database

Species-specific genomic studies enabling assay development for regulatory standards and cell line optimization

A suite of assays and genomic knowledge exists for humans and commonly used laboratory species such as mice or fruit flies. However, the same species-specific infrastructure does not exist equally across the species used in cultivated meat, with an especially large gap in seafood species. Commercialized, standardized assays for species identification such as Short Tandem Repeat (STR) or Cytochrome C Oxidase I (COI) assays are needed. Additionally, richer genetic datasets, including thorough genome annotations that facilitate identification of safe harbor loci, can broadly accelerate cell line optimization studies.

Solutions Database

Microbial strain-development contract research organizations for alternative protein applications

While emerging fermentation-derived ingredient companies often optimize their strain’s productivity in-house, it may be more efficacious for startups to engage contract research organizations with both deep microbial strain development expertise and also intimate familiarity with the unique considerations of the alternative protein sector.