Species-agnostic

Solutions Database

Developing scalable, fit-for-purpose bioreactor and bioprocessing technologies for cultivated meat

Optimizing bioreactor and bioprocessing technologies for the needs of the cultivated meat industry has the potential to substantially reduce the cost of cultivated meat production. Innovations in cultivated meat bioprocessing can be broadly classified into strategies focused on food-grade operation, process intensification, and the exploration of novel bioreactor geometries.

Solutions Database

Mapping animal cell metabolism to optimize media formulation

The cost and environmental impact of cultivated meat are driven by the cell culture media formulation and its conversion efficiency into meat. Metabolic modeling and engineering techniques can aid media formulation and ensure its optimal use. Targeted optimization will improve the cost-competitiveness and sustainability of cultivated meat production.

Solutions Database

Scaffolds and structural approaches to optimize fat distribution and content in cultivated meat

The inclusion of fat and marbling in cultivated meat is likely to increase its flavor, texture, and consumer appeal. Structural approaches using edible microcarriers, hydrogels, and 3D bioprinting present promising options to support fat cell growth and reduce buoyancy in culture for integrating fat into cuts of meat, but more research is needed to optimize conditions. 

Solutions Database

Hybrid products to optimize nutrition, taste, cost, and sustainability

Hybrid products are a promising means to introduce cost-competitive versions of cultivated meat to the market while improving the taste of plant proteins. Promoting the health benefits of hybrids may facilitate consumer acceptance, but more research is needed to identify the optimal ratios between plant-based and cultivated ingredients to increase nutrition without compromising flavor.

Solutions Database

Cost-effective sterility controls for cultivated meat

Meticulous attention to sterility controls throughout cultivated meat production is essential to optimize food safety, but the cost of biopharmaceutical-based sterility—the current standard for cell-based processes—is incongruent with large-scale food production. Research to identify alternative sterility processes with lower costs is needed for cultivated meat to scale successfully.

Solutions Database

Scientist / engineer outreach and education

To expand the technical talent pipeline, various players in the alternative protein field should reach out to scientists and engineers in relevant disciplines (e.g., biotech, biopharma, and food science) to inform them of opportunities to apply their existing expertise to this field. Efforts should target students and seasoned professionals.