Cell line development

Solutions Database

Promoting stemness and proliferation in fish cell cultures

Efficient and cost-effective cultivated fish production will require precise optimization to encourage fast proliferation and highly efficient use of inputs while preventing premature differentiation. A variety of strategies can be employed to adjust various factors that contribute to these properties, including optimizing the starting cell line, improving the composition of the proliferation medium, and exploring the possibility of transdifferentiating easy-to-grow cell lines like fibroblasts into myogenic and adipogenic lineages.

Solutions Database

Incorporating omega-3s into cultivated seafood

Cultivated seafood will need to be supplemented with long-chain omega-3 polyunsaturated fatty acids to be nutritionally equivalent or superior to conventional seafood. However, how these compounds can best be incorporated has not been determined, and there are several potentially-viable strategies. Further research is needed to determine which strategies are most cost-effective and scalable and whether there are appreciable differences between methods in the quality of the final product.

Solutions Database

Cultivated meat makerspaces to promote public engagement

Both the cultivated meat industry and interested members of the general public would benefit from the creation of makerspaces focused on cultivated meat. These would be publicly available spaces where community members can learn, experiment, and work collaboratively on projects related to cultivated meat. Here, they would have access to the physical equipment necessary to conduct projects as well as technical assistance to inform them. The aim of this project is to encourage more interaction between the public and the alternative protein industry, thus stimulating the exploration and development of more ideas. Makerspaces could also promote greater understanding of and openness to cultivated meat among future consumers of the product.

Solutions Database

Co-cultured support cells for cultivated meat

Cultivated meat research focuses primarily on muscle fibers and fat cells. However, other cell types serve functions that are often under appreciated in their relevance to cultivated meat. Co-culture methods with various support cells could solve a variety of challenges on the road to developing affordable, high-quality cultivated meat.

Solutions Database

Metabolic modeling for cultivated meat

Academic researchers or consortia consisting of several cultivated meat companies should undertake research aimed at understanding metabolic pathways and fluxes within cultivated meat-relevant cell types. The outputs of this research could be used to improve the efficiency of media optimization efforts and to enhance the organoleptic and nutritional properties of cultivated meat products.

Solutions Database

Understanding uptake and interconversion of omega-3 fatty acids by cultivated fish cells

Although fish are one of the best dietary sources of long-chain omega-3 fatty acids (FAs), these compounds are mostly bioaccumulated from a fish’s diet rather than synthesized de novo. Consistent with this, studies have found evidence of reduced omega-3 content in fish as a result of replacing fish-based feed with plant-based feed. Therefore, for cultivated fish to compete with conventionally-produced products, it will be necessary to identify cost-effective strategies for increasing the content of nutritionally-important omega-3 FAs in cultivated fish.

Solutions Database

Scaffolding development for culinary and biomechanical requirements of cultivated seafood

A number of published studies have focused on scaffolds for cultivated meat (see Related Efforts) yet, to our knowledge, no studies have specifically attempted to formulate scaffolds for fish or tested growth of fish cells on scaffolds developed for terrestrial meat. Because fish uniquely differ from terrestrial meat in structure, research aimed specifically at developing and testing scaffolds for fish products would advance the industry. Both scaffolding materials as well as methods for achieving the correct three-dimensional structure should be investigated.

Solutions Database

Species-specific genomic studies enabling assay development for regulatory standards and cell line optimization

A suite of assays and genomic knowledge exists for humans and commonly used laboratory species such as mice or fruit flies. However, the same species-specific infrastructure does not exist equally across the species used in cultivated meat, with an especially large gap in seafood species. Commercialized, standardized assays for species identification such as Short Tandem Repeat (STR) or Cytochrome C Oxidase I (COI) assays are needed. Additionally, richer genetic datasets, including thorough genome annotations that facilitate identification of safe harbor loci, can broadly accelerate cell line optimization studies.