Cell line development

Solutions Database

Metabolic modeling for cultivated meat

Academic researchers or consortia consisting of several cultivated meat companies should undertake research aimed at understanding metabolic pathways and fluxes within cultivated meat-relevant cell types. The outputs of this research could be used to improve the efficiency of media optimization efforts and to enhance the organoleptic and nutritional properties of cultivated meat products.

Solutions Database

Understanding uptake and interconversion of omega-3 fatty acids by cultivated fish cells

Although fish are one of the best dietary sources of long-chain omega-3 fatty acids (FAs), these compounds are mostly bioaccumulated from a fish’s diet rather than synthesized de novo. Consistent with this, studies have found evidence of reduced omega-3 content in fish as a result of replacing fish-based feed with plant-based feed. Therefore, for cultivated fish to compete with conventionally-produced products, it will be necessary to identify cost-effective strategies for increasing the content of nutritionally-important omega-3 FAs in cultivated fish.

Solutions Database

Scaffolding development for culinary and biomechanical requirements of cultivated seafood

A number of published studies have focused on scaffolds for cultivated meat (see Related Efforts) yet, to our knowledge, no studies have specifically attempted to formulate scaffolds for fish or tested growth of fish cells on scaffolds developed for terrestrial meat. Because fish uniquely differ from terrestrial meat in structure, research aimed specifically at developing and testing scaffolds for fish products would advance the industry. Both scaffolding materials as well as methods for achieving the correct three-dimensional structure should be investigated.

Solutions Database

Species-specific genomic studies enabling assay development for regulatory standards and cell line optimization

A suite of assays and genomic knowledge exists for humans and commonly used laboratory species such as mice or fruit flies. However, the same species-specific infrastructure does not exist equally across the species used in cultivated meat, with an especially large gap in seafood species. Commercialized, standardized assays for species identification such as Short Tandem Repeat (STR) or Cytochrome C Oxidase I (COI) assays are needed. Additionally, richer genetic datasets, including thorough genome annotations that facilitate identification of safe harbor loci, can broadly accelerate cell line optimization studies.

Solutions Database

Mapping the secretome of animal myoblasts, adipocytes, and other cells used in cultivated meat

Stem cells secrete a variety of signaling factors that can influence the behavior of surrounding cells, known as paracrine signals. In high-density bioprocesses, these secreted factors can accumulate to concentrations that can dramatically influence productivity and behavior of neighboring cells. By mapping the secretome of animal myoblasts, adipocytes, and other stem cells used for cultivated meat, a better understanding of which factors influence proliferation, differentiation, and other cellular traits can be obtained. Mapping efforts will inform how to best leverage this knowledge to improve cultivated meat production.

Solutions Database

Establishment of cell line repositories and standardized isolation protocols

Development of humanely-sourced and thoroughly documented and characterized cell lines from a variety of common food species—together with a mechanism for licensing and distributing these lines to researchers and companies—will remove a key barrier to entry into the field of cultivated meat. In addition, development of open-access, standardized protocols for performing cell isolation from a variety of source tissues and establishing robust cell lines will streamline the processes for those who do end up needing to perform their own isolation and cell line establishment.