Scaffolding

Solutions Database

Semi-continuous bioprocess for whole cut cultivated meat using simultaneous perfusion and stretch

Stretching of engineered muscle constructs has been previously demonstrated to induce alignment and maturation of muscle fibers, which is desirable for whole cut cultivated meat. Stretch stimuli could also be incorporated into a semi-continuous bioprocess in which a piece of tissue is expanded over time and portions of the tissue periodically harvested. The large amount of meat produced could offset the high initial cost of fabricating a construct capable of continuous growth.

Solutions Database

Incorporating omega-3s into cultivated seafood

Cultivated seafood will need to be supplemented with long-chain omega-3 polyunsaturated fatty acids to be nutritionally equivalent or superior to conventional seafood. However, how these compounds can best be incorporated has not been determined, and there are several potentially-viable strategies. Further research is needed to determine which strategies are most cost-effective and scalable and whether there are appreciable differences between methods in the quality of the final product.

Solutions Database

Cultivated meat makerspaces to promote public engagement

Both the cultivated meat industry and interested members of the general public would benefit from the creation of makerspaces focused on cultivated meat. These would be publicly available spaces where community members can learn, experiment, and work collaboratively on projects related to cultivated meat. Here, they would have access to the physical equipment necessary to conduct projects as well as technical assistance to inform them. The aim of this project is to encourage more interaction between the public and the alternative protein industry, thus stimulating the exploration and development of more ideas. Makerspaces could also promote greater understanding of and openness to cultivated meat among future consumers of the product.

Solutions Database

Biomaterials for scaffolding

A handful of companies and researchers are developing scaffold materials for use in various steps of the cultivated meat production process, but to date the topic of scaffolding has been largely overshadowed by the challenge of producing cell mass at scale. This is a topic in need of much more research and development as the industry matures in order to enable the development of products that have meat-like structure and texture, which will be more appealing to consumers than unstructured meat products.

Solutions Database

Scaffolding development for culinary and biomechanical requirements of cultivated seafood

A number of published studies have focused on scaffolds for cultivated meat (see Related Efforts) yet, to our knowledge, no studies have specifically attempted to formulate scaffolds for fish or tested growth of fish cells on scaffolds developed for terrestrial meat. Because fish uniquely differ from terrestrial meat in structure, research aimed specifically at developing and testing scaffolds for fish products would advance the industry. Both scaffolding materials as well as methods for achieving the correct three-dimensional structure should be investigated.

Solutions Database

Forging product development partnerships among ingredient suppliers and manufacturers

Opportunities exist to coordinate product development partnerships between ingredient suppliers, strategic partners, and product manufacturers to directly engage more holistically on product formulation.

Solutions Database

Computational models of perfusion flow through scaffolds

For tissue-structured cultivated meat production, the transition from the proliferation phase to differentiation phase may involve seeding cells onto a prefabricated scaffold within a perfusion bioreactor. Medium is then perfused through the cell-laden scaffold, providing nutrients and oxygen as cells differentiate and mature. Computational models are needed to describe fluid flow through scaffolds to better understand mass transfer and shear forces. These models will inform considerations for scaffold materials, geometries, dimensions, fabrication methods, and bioprocess design as well as considerations for the composition and viscosity of the medium.

Solutions Database

3D microenvironments for cell expansion

Proliferation and high-density cell growth are fundamentally important to scaling cultivated meat production. Recent demonstrations of stem cell expansion in 3D microenvironments such as encapsulated spheres or tubules can generate cell densities far higher than industry-leading stirred tank bioreactors with minimal loss of cell viability or stemness. As a scalable platform, the use of 3D microenvironments for stem cell expansion and differentiation—particularly with the relevant cell types used in cultivated meat—warrants further investigation.