Scaffolding

Solutions Database

Naturally adhesive and edible non-animal scaffolding materials

There is a limited number of edible non-animal scaffold materials that are naturally adhesive for use in cultivated meat production. Identifying a larger and more diverse set of these materials, which tend to be inexpensive and accessible, and characterizing their industrial scalability, environmental impact, and effects on food properties supports progress towards cultivated meat price parity.

Solutions Database

Scaffolds and structural approaches to optimize fat distribution and content in cultivated meat

The inclusion of fat and marbling in cultivated meat is likely to increase its flavor, texture, and consumer appeal. Structural approaches using edible microcarriers, hydrogels, and 3D bioprinting present promising options to support fat cell growth and reduce buoyancy in culture for integrating fat into cuts of meat, but more research is needed to optimize conditions. 

Solutions Database

Plant-based scaffolds to improve cultivated meat nutrition

A variety of plant-based scaffolds present the opportunity to combine the natural nutritional and structural benefits of plants with the taste and high protein of cultivated meat. Bacterial nanocellulose from coconut water is a particularly promising scaffold material with its FDA approval status and beneficial nutritional and cell adhesion properties.

Solutions Database

Semi-continuous bioprocess for whole cut cultivated meat using simultaneous perfusion and stretch

Stretching of engineered muscle constructs has been previously demonstrated to induce alignment and maturation of muscle fibers, which is desirable for whole cut cultivated meat. Stretch stimuli could also be incorporated into a semi-continuous bioprocess in which a piece of tissue is expanded over time and portions of the tissue periodically harvested. The large amount of meat produced could offset the high initial cost of fabricating a construct capable of continuous growth.

Solutions Database

Incorporating omega-3s into cultivated seafood

Cultivated seafood will need to be supplemented with long-chain omega-3 polyunsaturated fatty acids to be nutritionally equivalent or superior to conventional seafood. However, how these compounds can best be incorporated has not been determined, and there are several potentially-viable strategies. Further research is needed to determine which strategies are most cost-effective and scalable and whether there are appreciable differences between methods in the quality of the final product.