Raw Materials, Ingredients, & Inputs

Solutions Database

Scaffolding development for culinary and biomechanical requirements of cultivated seafood

A number of published studies have focused on scaffolds for cultivated meat (see Related Efforts) yet, to our knowledge, no studies have specifically attempted to formulate scaffolds for fish or tested growth of fish cells on scaffolds developed for terrestrial meat. Because fish uniquely differ from terrestrial meat in structure, research aimed specifically at developing and testing scaffolds for fish products would advance the industry. Both scaffolding materials as well as methods for achieving the correct three-dimensional structure should be investigated.

Solutions Database

Fiber spinning innovations for improved plant protein texturization

Fibers from non-traditional texturization techniques like electrospinning, jet spinning, or blow spinning could impart texture throughout a product even if they don’t comprise the bulk of the end product, which may render these approaches economically viable for enhancing texture within a bulk product even at a relatively small scale.

Solutions Database

Plants as a recombinant protein expression platform

Plants can serve as expression platforms similar to microorganisms used as recombinant protein hosts. This may require minimal processing into value-added ingredients, such as egg and dairy functional proteins. Plants offer scalability with less need for expensive downstream purification to isolate proteins of interest from inedible or undesirable hosts.

Solutions Database

Forging product development partnerships among ingredient suppliers and manufacturers

Opportunities exist to coordinate product development partnerships between ingredient suppliers, strategic partners, and product manufacturers to directly engage more holistically on product formulation.

Solutions Database

Systematic investigation of growth factor needs and effects

Open-access research into growth factors required for proliferation, maintenance, and differentiation of cell types relevant to cultivated meat will support both academic and industry research efforts. This research could include screening of species-specific growth factors under a variety of conditions and in a variety of cell types to characterize cross-species compatibility, which informs commercial efforts to scale production of the most widely used growth factors. Research should also seek to define optimal concentrations of individual growth factors and cocktails for achieving various cell states or behaviors, as well as understanding interactions between growth factors.

Solutions Database

Expand capacity for demonstration-scale and mid-scale co-manufacturing

Companies entering the alt protein space often struggle to secure line time at demonstration-scale and mid-scale commercial production facilities. Greater availability of mid-scale contract capacity would reduce capital outlays and facilitate scaling, allowing alt protein companies to maintain greater control over their equity and exercise more influence within the supply chain. Contracting production allows for a more modular supply chain, with participants achieving gains from specialization, allowing for better financial and organizational structuring around core competencies.

Solutions Database

Infrastructure and equipment leasing fund

Infrastructure leasing for production and processing facilities as well as capital equipment would enable alternative protein companies to rapidly expand capacity without large upfront capital investments. Having leasing funds and leasing companies with an alternative protein focus could entice corporate players who otherwise would not have considered alternative proteins to enter the space. They could also spare many smaller alternative protein startups from undertaking relatively expensive, equity-backed capital raises early in their expansion.

Solutions Database

Producing animal-like fats through microbial fermentation

Microbial fermentation provides an efficient method for generating lipid molecules that are chemically identical to those produced by animals. Research efforts are needed to expand current knowledge about the process of engineering the appropriate metabolic pathways for the synthesis of animal lipids into microbial organisms well-suited for large-scale fermentation.