Open-access product formulation specification sheets
Open-access product formulation specifications could provide clear metrics and objectives for product developers on attributes like taste, price, nutrition, and ingredient ratios.
Open-access product formulation specifications could provide clear metrics and objectives for product developers on attributes like taste, price, nutrition, and ingredient ratios.
Plants can serve as expression platforms similar to microorganisms used as recombinant protein hosts. This may require minimal processing into value-added ingredients, such as egg and dairy functional proteins. Plants offer scalability with less need for expensive downstream purification to isolate proteins of interest from inedible or undesirable hosts.
Opportunities exist to coordinate product development partnerships between ingredient suppliers, strategic partners, and product manufacturers to directly engage more holistically on product formulation.
Plant-based food manufacturers often struggle with batch-to-batch ingredient inconsistency and variability between suppliers. Better analytical tools for predicting plant-based ingredient performance could improve manufacturing efficiency and create more transparent ingredient markets. Tools are needed to predict how ingredients will perform after various processing methods and in end-product applications like plant-based meat and dairy.
Processing crops into flours, isolates, and concentrates often relies on chemical and mechanical methods. Biological processing techniques may impart the desired composition and molecular structure for optimal functionality with increased precision, lower cost, and greater suitability for small-scale processing. Biological processing techniques include using enzymes to fine-tune functional properties like solubility, gelling capacity, and fat- and water-binding capacity or using microbial fermentation to convert plant protein feedstocks into more functional forms.
After identifying specific target molecules or desired functionalities in animal-derived foods, scientists can work backward, mining microbial sequences for candidate molecules in the microbial realm that might provide similar functionality. This process can also elucidate the pathways that produce these molecules and inform strategies for designing microbial strains that produce these molecules at scale.
There is a need for deeper fundamental research on the relationships between protein sequence, structure, functionality, and ultimately performance in plant-based food products. While several plant-based companies have claimed a competitive advantage from building databases of functional properties and applying machine learning to inform protein selection and formulation, these capabilities remain proprietary and the efforts duplicative. An open-access database could provide functional and characterization data using standardized methods to facilitate direct performance comparisons among proteins and train predictive algorithms.
Oleaginous yeast can convert sugars into fats that impart flavor and mouthfeel to alternative proteins, and they can accumulate lipids within their cell bodies to inhibit oxidation. New research on lipid encapsulation in yeast should investigate the efficacy of yeast species for the accumulation and storage of lipids—including lipids with the same profile as animal lipids.