Startups

Solutions Database

Techno-economic models to inform product and process development

Techno-economic models are critical for process design and cost of goods projections. Open-access models based on generalized or exemplar processes with standardized unit operations and designs can form the foundation for individual companies’ work, reducing duplicative effort. Furthermore, techno-economic models can identify key cost drivers and opportunities for process improvements to guide future research efforts. The independent research consultancy CE Delft recently published a cultivated meat techno-economic analysis. However, similar efforts are needed for fermentation-derived  and plant-based meat production.

Solutions Database

Biosynthetic pathway discovery for fermentation-produced molecules

After identifying specific target molecules or desired functionalities in animal-derived foods, scientists can work backward, mining microbial sequences for candidate molecules in the microbial realm that might provide similar functionality. This process can also elucidate the pathways that produce these molecules and inform strategies for designing microbial strains that produce these molecules at scale.

Solutions Database

Protein sequence, structure, and functionality database

There is a need for deeper fundamental research on the relationships between protein sequence, structure, functionality, and ultimately performance in plant-based food products. While several plant-based companies have claimed a competitive advantage from building databases of functional properties and applying machine learning to inform protein selection and formulation, these capabilities remain proprietary and the efforts duplicative. An open-access database could provide functional and characterization data using standardized methods to facilitate direct performance comparisons among proteins and train predictive algorithms.

Solutions Database

Fat production & encapsulation within oleaginous yeast

Oleaginous yeast can convert sugars into fats that impart flavor and mouthfeel to alternative proteins, and they can accumulate lipids within their cell bodies to inhibit oxidation. New research on lipid encapsulation in yeast should investigate the efficacy of yeast species for the accumulation and storage of lipids—including lipids with the same profile as animal lipids.

Solutions Database

3D microenvironments for cell expansion

Proliferation and high-density cell growth are fundamentally important to scaling cultivated meat production. Recent demonstrations of stem cell expansion in 3D microenvironments such as encapsulated spheres or tubules can generate cell densities far higher than industry-leading stirred tank bioreactors with minimal loss of cell viability or stemness. As a scalable platform, the use of 3D microenvironments for stem cell expansion and differentiation—particularly with the relevant cell types used in cultivated meat—warrants further investigation.