Startups

Solutions Database

Computational models of perfusion flow through scaffolds

For tissue-structured cultivated meat production, the transition from the proliferation phase to differentiation phase may involve seeding cells onto a prefabricated scaffold within a perfusion bioreactor. Medium is then perfused through the cell-laden scaffold, providing nutrients and oxygen as cells differentiate and mature. Computational models are needed to describe fluid flow through scaffolds to better understand mass transfer and shear forces. These models will inform considerations for scaffold materials, geometries, dimensions, fabrication methods, and bioprocess design as well as considerations for the composition and viscosity of the medium.

Solutions Database

Producing animal-like fats through microbial fermentation

Microbial fermentation provides an efficient method for generating lipid molecules that are chemically identical to those produced by animals. Research efforts are needed to expand current knowledge about the process of engineering the appropriate metabolic pathways for the synthesis of animal lipids into microbial organisms well-suited for large-scale fermentation.

Solutions Database

Fat and moisture encapsulation for alternative protein products

Fat and moisture retention are critical to the organoleptic properties of meat and must be perfected across all alternative protein platforms. Solutions for encapsulating fat and moisture are necessary to ensure that these components are protected from damage or loss throughout manufacturing, storage, cooking, and mastication.

Solutions Database

Building workforce capacity through vocational programs

Given the strong and persistent growth in alternative protein production, the industry has a pressing need for a trained workforce. Technical colleges should establish programs to help train the next generation of alternative protein workforces and build a talent pipeline for the industry.

Solutions Database

Post-harvest processes and end product characterization for cultivated meat

A number of cellular processes occurring after slaughter are known to affect the quality and sensory properties of conventional meat. Cultivated meat will offer unprecedented control over these parameters and therefore over the quality of the final product, but it is critical to understand exactly how post-harvest processes for cultivated meat can or should differ from post-slaughter processes in conventional meat. This research can enable subsequent innovations in bioprocess design, media formulation, cell line development, or harvesting techniques to confer consistently high levels of meat quality from cultivated meat processes.