Cultivated

Solutions Database

Coordination among investors with alternative protein industry-specific expertise

Investors specializing in alternative proteins should be leveraged to educate the broader investment community through coalitions, syndicated deals, and co-investments with industry-agnostic investors, and spearhead efforts to facilitate later-stage funding like debt and inventory financing.

Solutions Database

Establishing student groups at key universities

Universities are epicenters for creative problem-solving and cutting-edge research advancements, and they can serve as engines for interdisciplinary innovation. However, this potential is not being tapped fully by the alternative protein industry. University student groups at key universities can foster robust, in-person communities for students and researchers interested in elevating the profile of alternative proteins within the academy. This will generate a talent pipeline of informed and empowered young people poised to enter the sector after their education while simultaneously spurring greater awareness and involvement among established faculty members.

Solutions Database

Species-specific genomic studies enabling assay development for regulatory standards and cell line optimization

A suite of assays and genomic knowledge exists for humans and commonly used laboratory species such as mice or fruit flies. However, the same species-specific infrastructure does not exist equally across the species used in cultivated meat, with an especially large gap in seafood species. Commercialized, standardized assays for species identification such as Short Tandem Repeat (STR) or Cytochrome C Oxidase I (COI) assays are needed. Additionally, richer genetic datasets, including thorough genome annotations that facilitate identification of safe harbor loci, can broadly accelerate cell line optimization studies.

Solutions Database

Mapping the secretome of animal myoblasts, adipocytes, and other cells used in cultivated meat

Stem cells secrete a variety of signaling factors that can influence the behavior of surrounding cells, known as paracrine signals. In high-density bioprocesses, these secreted factors can accumulate to concentrations that can dramatically influence productivity and behavior of neighboring cells. By mapping the secretome of animal myoblasts, adipocytes, and other stem cells used for cultivated meat, a better understanding of which factors influence proliferation, differentiation, and other cellular traits can be obtained. Mapping efforts will inform how to best leverage this knowledge to improve cultivated meat production.

Solutions Database

Forging product development partnerships among ingredient suppliers and manufacturers

Opportunities exist to coordinate product development partnerships between ingredient suppliers, strategic partners, and product manufacturers to directly engage more holistically on product formulation.