Making muscle cells

2020-2022

Dr. Bar-Nur is exploring a process to directly convert bovine and porcine fibroblasts into proliferative myogenic progenitor cells.

PRODUCTION PLATFORM: Cultivated

TECHNOLOGY SECTOR:  Cell line development

GFI's Competitive Research Grants Program Badge, featuring a whole cut of meat within a magnifying glass representing research

Project aims

This project aims to convert fibroblasts directly into induced myogenic progenitor cells to be used for cultivating meat. This would provide an alternative to conventional methods of growing muscle progenitors (i.e., myoblasts). The project also assesses the capacity of the induced myogenic progenitors to generate muscle fibers by small molecules and serum withdrawal.

This work will devise new methods to produce animal muscle cell lines. Ultimately, it could reduce costs of cultivated meat production via long-term propagation of cell lines.

Principal researcher

Ori Bar-Nur headshot

Dr. Ori Bar-Nur

Assistant Professor, ETH Zurich, Switzerland

Dr. Bar-Nur has experience generating muscle stem and progenitor cells through direct lineage conversion of somatic cells. He has investigated myogenic stem cells for muscle regeneration and explored the capacity to expand and characterize myogenic cultures molecularly and functionally.

GFI’s competitive research grant program badge on a background of abstract circles and lines representing science

Page

Research grants

Learn about cutting-edge alternative protein research funded by GFI. Find funding opportunities for your own research.

View related grant projects

Stem cells for cultured meat development

The Frozen Farmyard repository

Learn about Dr. Gareth Sullivan’s work to develop a “frozen farmyard” cell line repository for cultivated meat.

A redfish is swimming in the grass flats ocean

Seafood cell lines

Learn about Dr. Kevan Main and Dr. Cathy Walsh’s work at Mote Marine Laboratory to develop cell lines and methodology for cultivated seafood.

Atlantic salmon swimming in the ocean

Myosatellite lines from Atlantic salmon

Through the GFI grant program, the Kaplan lab is developing myosatellite lines for cultivated Atlantic salmon at Tufts University

Explore research opportunities

  • Cultivated
  • Fermentation
  • Plant-Based

Build alternative protein sessions into scientific conferences

Elevating the visibility and credibility of the field at scientific conferences will expand the technical talent pipeline and amplify collaboration and funding efforts.

Read More
  • Cultivated
  • Fermentation
  • Plant-Based

Building interdisciplinary university research centers of excellence

Interdisciplinary research is essential for tackling many of the complex problems facing today’s world. Though the number of research projects advancing alternative protein science has increased in recent years, this…

Read More
  • Cultivated
  • Fermentation
  • Plant-Based

Building alternative protein programs and majors at universities

To ensure a strong talent pipeline, there is a need to launch robust university programming, ranging from certificate programs to short multi-course modules, centered around alternative protein. Full majors would…

Read More
A battered and fried cultured meat, a cultured chicken cutlet, plated with sauteed greens and mashed root vegetables | Image courtesy of Memphis Meats

The science of cultivated meat

Learn about the science of cultivated meat and the challenges that must be addressed for commercial production.

Scientist looking through a microscope, wearing blue gloves

Cultivated Meat Research Tools Database

Use this crowdsourced directory to find species-specific information on research tools, reagents, protocols, and data for cultivated meat researchers.

Animal cells in suspension, representing the concept of cultured meat

Expanding access to cell lines

Lack of access to cell lines is a major barrier to cultivated meat research. This initiative is increasing access and funding the development of new lines.