Designing cost-effective bioreactors


Dr. Ellis is exploring the interplay between bioreactors, media, and scaffold designs to identify ways to reduce the cost of cultivated meat production.


TECHNOLOGY SECTOR:  Bioprocess design

Gfi's competitive research grants program badge, featuring a whole cut of meat within a magnifying glass representing research

Project aims

This project aims to establish growth media consumption and waste production profiles for both proliferation and differentiation in various bioreactors. It will also produce correlations for the relationship among scaffold structure, fluid dynamics, and biological profiles in bioreactors.

This work will improve our understanding of how cell behavior changes as culture size increases, and could help develop a more compact, cost-effective bioreactor for cultivated meat production in novel scenarios.

Principal researcher

Gfi grantee dr. Marianne ellis, senior lecturer, associate professor, university of bath, uk

Dr. Marianne Ellis

Senior Lecturer, Associate Professor, University of Bath, UK

Dr. Ellis holds a strong academic and commercialization track record with expertise in tissue engineering and bioprocess design. She has published 30 reviews and articles on cellular agriculture, tissue engineering, and bioprocess design for a range of applications. She is also the founder of successful startup Cellesce Ltd., and co-founder of Cellular Agriculture Ltd.

Research grant program badge


Research grants

Learn about cutting-edge alternative protein research funded by GFI. Find funding opportunities for your own research.

View related grant projects

Biosensor concept for monitoring cultivated meat production in real time

Integrating sensors into bioreactors

GFI grantees Dr. Ivana Gadjanski and Dr. Vasa Radonic are integrating sensors into bioreactors for cultivated meat production.

Pattern of cells, representing cell culture for meat cultivation

Co-culturing cells

GFI grantee Dr. Mariana Petronela Hanga is researching culturing different cell types at the same time.

Abstract representation of computational modeling for cultured meat

Computational modeling

GFI grantee Dr. Simon Kahan at the Cultivated Meat Modeling Consortium is using computational modeling to improve bioreactor design for meat cultivation.

Explore research opportunities

  • Cultivated icon Cultivated

Mapping animal cell metabolism to optimize media formulation

The cost and environmental impact of cultivated meat are driven by the cell culture media formulation and its conversion efficiency into meat. Metabolic modeling and engineering techniques can aid media…

Read more
  • Cultivated icon Cultivated
  • Fermentation icon Fermentation

Consumer education on the food safety of cultivated meat

Consumer education on the food safety of cultivated meat can positively impact consumer acceptance when sufficient information is provided. Additional research and efforts to increase transparent science communication on the…

Read more
  • Cultivated icon Cultivated

Ensuring appropriate food safety controls for cultivated meat

Sterilization guidelines from well-established biomedical and food industries can act as helpful templates for safe cultivated meat production. However, more research is needed to identify potentially novel production hazards for…

Read more
A battered and fried cultured meat, a cultured chicken cutlet, plated with sauteed greens and mashed root vegetables | image courtesy of upside foods


The science of cultivated meat

Learn about the science of cultivated meat and the challenges that must be addressed for commercial production.