Formulating media with macromolecular crowding

2020-2021

Drs. Che Connon and Ricardo Gouveia are exploring the potential of macromolecular crowding (MMC) to promote myoblast and fat cell proliferation and enhance the production yield and quality of cultivated meat.

PRODUCTION PLATFORM: Cultivated

TECHNOLOGY SECTOR:  Cell culture media

Gfi's competitive research grants program badge, featuring a whole cut of meat within a magnifying glass representing research

Project aims

This project designs new high-throughput platforms to test the impact of different media formulations on muscle cell proliferation and differentiation. It also custom designs new serum-free, MMC-supplemented media formulations for improved muscle cell proliferation and tissue formation.

This work aims to increase the cell density and yield of cultivated meat production, as well as reduce media costs and the need for growth factors.

Principal researchers

Gfi grantee dr. Che connon, professor of tissue engineering, newcastle university, uk

Dr. Che Connon

Professor of Tissue Engineering, Newcastle University, UK

Dr. Connon works on culturing cells toward self-organizing 3-D functional systems and possesses a strong track record of academic publications and commercialization.

Gfi grantee dr. Ricardo gouveia, research fellow, newcastle university, uk

Dr. Ricardo Gouveia

Research Fellow, Newcastle University, UK

Dr. Gouveia has expertise in culturing cells and developing high-throughput bioprocess techniques. He is also a New Harvest Fellow.

Microscope view of animal cells

Scale-up technologies for the manufacture of adherent cells

Check out this recent article from Dr. Connon on bioreactor scaling.

View related grant projects

Rainbow representations of protein structures for a cultured meat concept

Lowering the cost of growth factors

Learn about Dr. Peter Stogios’ research engineering improved and lower-cost growth factors for cultivated meat at University of Toronto.

Happy chickens in a field, representing a future with cultured chicken

Optimizing media for chicken cells

Learn about Dr. David Block’s work to perfect growth media for cultivated chicken at University of California, Davis.

Salmon meat texture

Machine learning for fish growth media

Learn about Dr. Reza Ovissipour’s research using machine learning to optimize growth media for fish cells at Virginia Tech.

Explore research opportunities

  • Cultivated icon Cultivated
  • Fermentation icon Fermentation
  • Plant-based icon Plant-Based

Preventing oxidation of omega-3 fatty acids before and after addition to alternative seafood products

Deeper fundamental knowledge of the causes and prevention of oxidation of omega-3 fatty acids before, during, and after addition to alternative seafood products is needed to improve their nutritional and…

Read More
  • Cultivated icon Cultivated

Understanding uptake and interconversion of omega-3 fatty acids by cultivated fish cells

Although fish are one of the best dietary sources of long-chain omega-3 fatty acids (FAs), these compounds are mostly bioaccumulated from a fish’s diet rather than synthesized de novo. Consistent…

Read More
  • Cultivated icon Cultivated

Scaffolding development for culinary and biomechanical requirements of cultivated seafood

A number of published studies have focused on scaffolds for cultivated meat (see Related Efforts) yet, to our knowledge, no studies have specifically attempted to formulate scaffolds for fish or…

Read More
A battered and fried cultured meat, a cultured chicken cutlet, plated with sauteed greens and mashed root vegetables | image courtesy of upside foods

The science of cultivated meat

Learn about the science of cultivated meat and the challenges that must be addressed for commercial production.

Scientist looking through a microscope, wearing blue gloves

Cultivated Meat Research Tools Database

Use this crowdsourced directory to find species-specific information on research tools, reagents, protocols, and data for cultivated meat researchers.