M3atD: 3D bioprinting for cultivated meat

2020-2021

Dr. Sara Oliveira at the International Iberian Nanotechnology Laboratory in Portugal is 3D bioprinting scaffolds to efficiently produce cultivated meat.

PRODUCTION PLATFORM: Cultivated

TECHNOLOGY SECTOR:  Scaffolding

Gfi's competitive research grants program badge, featuring a whole cut of meat within a magnifying glass representing research

Project aims

This project is developing a set of methods that could be widely applied to the 3D printing of scaffolds for cultivated meat. Specifically, the research creates a 3D bioprinted model based on edible polymers to optimize the texture and nutritional profile of cultivated meat. It will also provide analysis of the organoleptic properties of cultivated meat.

Overall, this work will improve our understanding of 3D bioprinting’s potential in cultivated meat production.

Principal researcher

Gfi grantee dr. Sara oliveira, research engineer, international iberian nanotechnology laboratory, portugal

Dr. Sara Oliveira

Research Engineer, International Iberian Nanotechnology Laboratory, Portugal

Dr. Oliveira investigates 3-D food-printing applications for healthy and sustainable living. Her expertise is in fabricating stem cells and scaffolding by 3-D bioprinting, as well as inducing cell instruction through cell-materials interactions. She uses biotribology, rheology, flow dynamics, structural analysis, textural analysis, and design of experiments to model food inks and 3-D foods properties. She also studies plant-derived oleogels.

Gfi’s competitive research grant program badge on a background of abstract circles and lines representing science

Page

Research grants

Learn about cutting-edge alternative protein research funded by GFI. Find funding opportunities for your own research.

View related grant projects

Illustration representing marbled cultivated beef

Developing marbled cultivated beef

GFI is developing marbled cultivated beef with Dr. Amy Rowat at University of California, Los Angeles

Colorful wooden building blocks

Cellular building blocks

Learn about Dr. Marcelle Machluf’s work designing cellular building blocks for cultivated meat with at Technion – Israel Institute of Technology.

Plant cells under a microscope, representing scaffolding for cultured meat

Plant-based scaffolds

GFI is building plant-based tissue scaffolds for cultivated meat with Dr. Masatoshi Suzuki at University of Wisconsin, Madison

Explore research opportunities

  • Cultivated icon Cultivated

Semi-continuous bioprocess for whole cut cultivated meat using simultaneous perfusion and stretch

Stretching of engineered muscle constructs has been previously demonstrated to induce alignment and maturation of muscle fibers, which is desirable for whole cut cultivated meat. Stretch stimuli could also be…

Read More
  • Cultivated icon Cultivated

Incorporating omega-3s into cultivated seafood

Cultivated seafood will need to be supplemented with long-chain omega-3 polyunsaturated fatty acids to be nutritionally equivalent or superior to conventional seafood. However, how these compounds can best be incorporated…

Read More
  • Cultivated icon Cultivated
  • Fermentation icon Fermentation
  • Plant-based icon Plant-Based

Repurposing and retrofitting facilities for use in alternative protein manufacturing

The manufacturing capacity for rapid and cost-effective scale-up of alternative protein production is a current constraint on the growth of the industry. Repurposing and retrofitting stranded or underutilized assets such…

Read More
A battered and fried cultured meat, a cultured chicken cutlet, plated with sauteed greens and mashed root vegetables | image courtesy of upside foods

Page

The science of cultivated meat

Learn about the science of cultivated meat and the challenges that must be addressed for commercial production.