M3atD: 3D bioprinting for cultivated meat

2020-2021

Dr. Sara Oliveira at the International Iberian Nanotechnology Laboratory in Portugal is 3D bioprinting scaffolds to efficiently produce cultivated meat.

PRODUCTION PLATFORM: Cultivated

TECHNOLOGY SECTOR:  Scaffolding

Gfi's competitive research grants program badge, featuring a whole cut of meat within a magnifying glass representing research

Project aims

This project is developing a set of methods that could be widely applied to the 3D printing of scaffolds for cultivated meat. Specifically, the research creates a 3D bioprinted model based on edible polymers to optimize the texture and nutritional profile of cultivated meat. It will also provide analysis of the organoleptic properties of cultivated meat.

Overall, this work will improve our understanding of 3D bioprinting’s potential in cultivated meat production.

Principal researcher

Gfi grantee dr. Sara oliveira, research engineer, international iberian nanotechnology laboratory, portugal

Dr. Sara Oliveira

Research Engineer, International Iberian Nanotechnology Laboratory, Portugal

Dr. Oliveira investigates 3-D food-printing applications for healthy and sustainable living. Her expertise is in fabricating stem cells and scaffolding by 3-D bioprinting, as well as inducing cell instruction through cell-materials interactions. She uses biotribology, rheology, flow dynamics, structural analysis, textural analysis, and design of experiments to model food inks and 3-D foods properties. She also studies plant-derived oleogels.

Research grant program badge

Page

Research grants

Learn about cutting-edge alternative protein research funded by GFI. Find funding opportunities for your own research.

View related grant projects

Illustration representing marbled cultivated beef

Developing marbled cultivated beef

GFI is developing marbled cultivated beef with Dr. Amy Rowat at University of California, Los Angeles

Colorful wooden building blocks

Cellular building blocks

Learn about Dr. Marcelle Machluf’s work designing cellular building blocks for cultivated meat with at Technion – Israel Institute of Technology.

Plant cells under a microscope, representing scaffolding for cultured meat

Plant-based scaffolds

GFI is building plant-based tissue scaffolds for cultivated meat with Dr. Masatoshi Suzuki at University of Wisconsin, Madison

Explore research opportunities

  • Cultivated icon Cultivated

Naturally adhesive and edible non-animal scaffolding materials

There is a limited number of edible non-animal scaffold materials that are naturally adhesive for use in cultivated meat production. Identifying a larger and more diverse set of these materials,…

Read more
  • Cultivated icon Cultivated

Incorporating growth factors into scaffolds to reduce costs and introduce spatial heterogeneity

Growth factors (GFs) can be incorporated into scaffolds as a strategy for both reducing costs and improving product quality of cultivated meat. Open-access research is needed to test the feasibility…

Read more
  • Cultivated icon Cultivated

Scaffolds and structural approaches to optimize fat distribution and content in cultivated meat

The inclusion of fat and marbling in cultivated meat is likely to increase its flavor, texture, and consumer appeal. Structural approaches using edible microcarriers, hydrogels, and 3D bioprinting present promising…

Read more
A battered and fried cultured meat, a cultured chicken cutlet, plated with sauteed greens and mashed root vegetables | image courtesy of upside foods

Page

The science of cultivated meat

Learn about the science of cultivated meat and the challenges that must be addressed for commercial production.