Cultivated icon Cultivated

Post-harvest processes and end product characterization for cultivated meat

A number of cellular processes occurring after slaughter are known to affect the quality and sensory properties of conventional meat. Cultivated meat will offer unprecedented control over these parameters and therefore over the quality of the final product, but it is critical to understand exactly how post-harvest processes for cultivated meat can or should differ from post-slaughter processes in conventional meat. This research can enable subsequent innovations in bioprocess design, media formulation, cell line development, or harvesting techniques to confer consistently high levels of meat quality from cultivated meat processes.

Production platform
  • Cultivated icon Cultivated
Solution category
  • Research
  • Commercial
Value chain segment
  • R&D
  • End Products
Technology sector
  • Bioprocess design
  • Cell culture media
  • End product formulation & manufacturing
Relevant actor
  • Academics
  • Startups

Current challenge

After slaughter, oxygen levels drop and cells switch to glycolysis. In animals with low glycogen reserves, the pH level can be too high, leading to meat that is dark, firm, and dry. If the pH drop is too rapid, especially if the meat remains warm, meat becomes pale, soft, and exudative. Glycogen synthesis increases with the concentrations of glucose, insulin, and epidermal growth factor (EGF) and is also influenced by glucosamine levels. Meat texture changes after rigor mortis in a manner dependent on ATP and calcium concentration, the extent of muscle contraction at rigor onset, and the cooling rate. The tenderness from aging meat results, in part, from enzymes such as cathepsins, calpains, and β-glucuronidase that break down connective tissue and myofibrillar proteins. We do not fully understand how these processes will differ in cultivated meat or how to manipulate the culture or harvest conditions to optimize cultivated meat quality.

Proposed solution

Academic research should investigate the rate and extent of pH changes in samples of cultivated meat immediately following harvest, and determine whether the relationship between pH, temperature, concentration of known factors like glucose, insulin, EGF, and glucosamine, and ultimately meat quality is the same as that in conventional meat. The effects of ATP and calcium concentrations and of enzymes produced within the muscle tissue should be investigated for their effects on meat texture over time in order to replicate the processes of rigor mortis under ideal conditions and of meat aging. Startups attempting to produce cultivated meat should consider variables that impact glycolysis, rigor mortis, and proteolysis when formulating strategies for optimizing their processes for growing and harvesting meat. While investigation of these basic principles in the context of cultivated meat will likely fit best in the academic context, some internal R&D work will be required in order to adapt these principles to a particular company’s set of processes and desired products. This research will likely spawn additional innovations in bioprocess design, cell line development, or harvesting methods to optimize cultivated meat quality.

Anticipated impact

A comprehensive understanding of post-harvest processes will enable consistently high-quality cultivated products. Producers may be able to alter texture, color, and flavor by changing the media composition during the final days of maturation, by flushing tissue with pre-harvest solutions to pre-condition cells for harvest, or by adjusting the rate of cooling before or after harvest. While conventional meat suffers from inconsistencies from the conditions in which animals are raised, experiences immediately pre-slaughter, the method of slaughter, and post-mortem handling of the meat, cultivated meat has the potential for unprecedented consistency and fine-tuning. This consistently high quality will lead cultivated meat to become an obvious choice for consumers while also reducing waste associated with sub-par products. Because cultivated meat will be sterile at the point of harvest, further improvements in taste and texture may be achievable via innovations in aging.

Academic papers on glycogen synthesis in cultured muscle cells:

References for understanding post-slaughter processes:

  • Lawrie and Ledward, 2006. Lawrie’s Meat Science, 7th Edition.
  • Gates, 2011. “Handbook of Seafood and Seafood Products Analysis.” Journal of Aquatic Food Product Technology 20 (2): 258–69.

GFI resources

Scientists looking at a screen displaying animal cells and a dna double helix

Collaborative Researcher Directory

Use this directory to find scientific collaborators in the alternative protein field.

Gfi’s competitive research grant program badge on a background of abstract circles and lines representing science

Research grants

Learn about cutting-edge alternative protein research funded by GFI. Find funding opportunities for your own research.

Lab partners looking in microscope

Find collaborators

Join the GFIdeas global community of 2,000+ entrepreneurs, scientists, investors, and subject matter experts. Discuss projects on the members-only Slack community, attend monthly seminars, and use the community directory to help you find collaborators working on similar Solutions!

  • Cultivated icon Cultivated
  • Fermentation icon Fermentation

B2B growth factors for proliferation

There is a need for a supplier of low-cost growth factors produced without the use of animals to support the proliferation phase of cultivated meat production. The cost of growth…

Read More
  • Fermentation icon Fermentation
  • Plant-based icon Plant-Based

Affordable animal-free omega-3 ingredients for alternative seafood and other alternative protein applications

In order to appeal to health-conscious consumers, alternative seafood products should contain similar omega-3 fatty acids, especially DHA and EPA, content to conventional seafood. Animal-free omega-3 ingredients can be expensive…

Read More
  • Fermentation icon Fermentation

Novel methods for long-chain omega-3 fatty acid production

As the alternative seafood industry scales up, a low-cost and abundant source of long-chain omega-3 polyunsaturated fatty acids will become necessary. Several means of producing these compounds have been investigated…

Read More

Female scientist doing alternative protein research in a lab

Explore the full solutions database

Browse 300+ startup ideas, commercial opportunities, research projects, and investment priorities throughout the alternative protein supply chain.

Get involved

If you’d like to fund a research project, work on any of these solutions, share information about related efforts that are already underway, or elevate new ideas for advancing the alternative protein industry, we’d love to hear from you!