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Abstract

Improved digital tools and models are needed to accelerate cultivated meat toward
commercialization through enabling more efficient bioreactor designs and operation.

Cultivated meat (CM) offers promise as a sustainable protein source, but reaching cost parity with
conventional meat remains a challenge. Scaling production will require very large bioreactors, which
are expensive to design and build; therefore, accurate predictive models are essential to guide
investment and design choices. These large systems will inherently exhibit heterogeneous
environments, especially as high cell concentrations increase culture viscosity. Simplified but
biologically informed models are needed to integrate with computational fluid dynamics simulations.
This sets our framework apart from flux-based or genome-scale models, which are better suited for
media optimization rather than reactor design at an industrial scale. Leveraging modern digital tools is
therefore critical to move the industry toward economic viability and achieve industrial-scale
production.

A central part of the push toward cost-effective scale-up is building performance models, which are
mathematical frameworks used to estimate how cells and bioreactors behave under different
conditions. The performance model framework is most useful when structured to separate
intracellular processes from extracellular and environmental ones, so each part of the system can be
examined and improved independently. The framework includes three components: the cell growth
model, the bioreactor environment model, and the system-level model that simulates operational
controls. In this report, we focus on the cell growth model, which covers predictions of biomass
accumulation, substrate use, and metabolite formation, because cell-level processes set the
foundation for predicting productivity, costs, and product characteristics, and are a prerequisite for
building the other model components.

Current modeling approaches face major limitations. Most techno-economic assessments assume
static and homogeneous conditions, which do not reflect the gradients and heterogeneity of
large-scale bioreactors. Empirical and semi-empirical models often fail to capture dynamic cellular
behavior, particularly the complex relationships between substrates like glucose and glutamine, or the
impact of metabolite accumulation, such as lactate and ammonium. Missing baseline data, including
cell mass and biomass composition, further complicate normalization across cell lines. Together, these
gaps limit predictive power and reduce the usefulness of digital twins for guiding process design.

To address the lack of dynamic, biologically informed models and the shortage of CM-relevant data,
we analyzed decades of biopharma data alongside the limited CM-specific data available to evaluate
how well biopharma cell lines reflect the behavior of CM-relevant cells. Our analysis identified key
parameters, modeling needs, and data gaps, such as dry cell mass, biomass composition, and the
effects of environmental variables like temperature, pH, and osmolality on cell growth. We reviewed
existing techno-economic models and the biological assumptions behind them, evaluated published
data across biopharma and CM-relevant cell lines, and identified where data are missing or
incompatible.
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These insights lay the groundwork for developing structured models of cell growth that improve
predictions for bioreactor performance. Unlike empirical models, structured models account for
intracellular and extracellular processes separately, which can include explicit representation of
metabolite pools and energy carriers such as ATP and NADH. Our findings show that energetics-based
models are especially useful because ATP and NADH yields remain consistent across cell lines. They
provide reliable anchors for describing growth kinetics, substrate use, and metabolite formation.
These models also point to strategies such as improved feeding, cell line adaptation, or genetic
modification to enhance efficiency. Energetics-based modeling provides a tractable and scalable path
toward predictive digital twins of CM processes.

In addition, opportunities in genetic engineering, such as circumventing the Warburg Effect and
adaptation strategies to reduce the inherent inefficiencies of animal cell metabolism, offer promising
avenues to improve productivity and reduce costs. More empirical data will be needed to validate and
refine these models, particularly time-series measurements of nutrient use, waste accumulation,
energetics, and adaptive responses under relevant culture conditions.
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Introduction

Cultivated meat (CM) is a new form of meat production that involves the cultivation of animal cells in a
safe and controlled environment. This approach presents society with the opportunity to feed more
people with fewer resources, meeting the growing global demand for protein in a more humane way.
While the biological knowledge and techniques to culture muscle, fat, and other cell types are well
established, transforming animal cell culture into a viable platform for large-scale food production
presents a multifaceted challenge. This transformation hinges not only on solving engineering
problems that lower costs and enhance scale, efficiency, and productivity, but also on developing a
deeper understanding of the complex interactions between cells, cell culture media, scaffolds (in
some cases), and bioreactor environments. To make any significant impact on conventional meat
consumption, CM will need to be manufactured at massive scales to, in turn, capture the economies of
scale needed to achieve cost parity. Therefore, tools are needed to predict the performance of cell
culture processes at scales that have never been attempted. As with other complex systems,
computational models offer powerful tools to understand, predict, and optimize the CM production
process—ultimately accelerating development and reducing costs.

Techno-economic models (TEMs) combine mathematical models of the underlying biological and
physical (or physicochemical) processes with analyses of key financial parameters to evaluate the
performance and economics of a given technology. TEMs are particularly useful in early technology
development, as they enable the identification of cost drivers to inform decision-making, test
hypotheses, and guide research. Several published TEMs of hypothetical, scaled CM processes have
illuminated cost drivers such as the cell culture media and manufacturing equipment used in CM
production (Goodwin, Aimutis, and Shirwaiker 2024). However, these TEMs have been based on a set
of assumptions rather than a true prediction of performance. We suggest that an underlying
performance model is needed to support TEMs to overcome their current limitations:

1. Most models have focused on evaluating the economics of a limited set of predefined processes
(e.g., stirred-tank reactors limited to 10-20K liter scale). These models largely ignore the many
other processes being trialed in the industry, including other bioreactor types (e.g., air-lift,
hollow fiber, fixed bed), operational modalities, and scales of production (Harsini and Swartz
2024; Laura Pasitka et al. 2024).

2. The underlying models for cell growth and bioreactors feature static stoichiometries,
homogenous bioreactor mixing, and fixed feeding strategies and growth rates that limit
performance optimization and evaluation of trade-offs. In short, more complex models may be
necessary to increase predictive power and interrogate different question sets or use cases.

3. The underlying models feature layers of assumptions taken from other industries (e.g.,
biopharma), and it remains an open question to what extent these assumptions apply to the
different cell types, species, and process settings used in CM production.

4. The framing of TEMs is often, “hypothetical process X is not economically viable, therefore
cultivated meat is not economically viable.” This framing ignores the reality that meat products
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vary significantly in cost and complexity, and different processes will be better suited to certain
product types versus others.

Our collective experience led us to conclude that the most economically viable method of CM
manufacturing for any given product is not yet known. Consequently, developing a model for such a
process is not possible at this time. Instead, models should be constructed to serve as tools that
enable more efficient discovery of economically viable paths forward while the industry remains small
and nimble. To accomplish this, models should not simply evaluate one-off hypothetical processes.
Rather than asking what level of performance is required to achieve favorable unit economics for a
given product, a performance model can be framed and constructed to evaluate which bioreactor
design will be more productive and estimate the consumption of raw material and utilities
quantitatively. Model development also builds an understanding of the critical parameters for
predicting the overall performance of any given bioprocess, with the ultimate goal of creating a digital
twin.

In this report, we describe a modeling approach centered on the evaluation of the
performance-to-cost ratio (PCR) to enable a future bioprocess optimization strategy. We present a
modeling framework that consists of a performance model incorporated with an underlying cell
growth model, a physical bioreactor environment model, and a bioreactor system model. The
performance model will be integrated alongside a cost model for a given bioreactor, process, or full
facility to derive a PCR that can be used as a tool for testing hypotheses for performance improvement
and cost reduction.

Given the number of variables and considerations for each component model, this report focuses
solely on the cell growth model. We present the governing equations important for cell growth and
review the literature that describes the key parameters and considerations of the equation set,
including cell size, mass, composition, proliferation and differentiation kinetics, metabolite inhibition,
and stoichiometry. Where possible, we compare data from cells used in biopharma with those used in
CM production and assumptions made in prior TEMs. Lastly, we describe the key data gaps and
incomplete information surrounding these parameters. Throughout, we provide clear direction for the
CM research community by describing cell growth knowledge and gaps alongside a guiding modeling
framework.

Future reports will replicate this process for the other component models, culminating in model
construction and outputs centered on comparative evaluation of the performance of different
bioreactor systems. Ultimately, the work presented here and future models that build on it will need to
be validated and/or refined through iterative, empirical experimentation at increasingly larger scales.
As more data become publicly available, open models created from this work will evolve in complexity
and customization, helping end users answer new questions as the technological readiness of the CM
sector matures. This work lays the foundation for a more complete understanding of large-scale
animal cell culture and the techno-economics of CM production.
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Report organization

The report consists of four sections that outline the development and assessment of an improved cell
growth and performance-to-cost modeling framework for CM production.

Section 1 describes the performance modeling framework, which is structured in three
nested components: a cell growth model, a bioreactor environment model, and a bioreactor
system model. It explains the rationale for focusing first on cell growth as the core driver of
productivity before layering on bioreactor and system-level considerations, which will be the
focus of separate studies.

Section 2 describes the cell growth model, outlining the mathematical equations and
modeling approaches to simulate cell proliferation, differentiation, death, nutrient
consumption, metabolite formation, and inhibition. It explains options for modeling these
processes, including empirical equations and structured energetics-based models.

Section 3 provides a critical review of the data available to define each parameter required
by the modeling approaches in Section 2. It evaluates the strength and consistency of existing
evidence, highlights areas where assumptions rely on limited information, and identifies
specific gaps that researchers must address to build reliable models.

Section 4 examines the big picture and broader challenges in modeling CM cell growth,
including the limitations of current approaches described in Section 2 and the data gaps
identified in Section 3. It explores opportunities to improve modeling frameworks and outlines
directions for developing more robust and adaptable tools.

Section 5 summarizes key conclusions and recommendations, based on decades of animal
cell culture research and their relevance to CM. It emphasizes the inefficiency of animal cell
metabolism, suggests ATP and NADH as a unifying basis for modeling, and notes the ability of
cells to adapt under stress or use alternative substrates. It identifies major data gaps,
particularly for dry cell mass, continuous culture, and energetics, and outlines priorities for
experimental work and cell line and process development.



Section 1. Modeling framework for techno-economic
assessment

The modeling framework presented here provides the basis for a future bioprocess optimization
strategy. At the highest level, the model system consists of a performance component and a cost
component (Figure 1.1). Together, these components allow the PCR to be evaluated for a given
process technology. The concept of the PCR can be applied to the cell culture bioreactor design itself
as well as the overall manufacturing facility.

The PCR can be defined as:

Ux VW VW
PCR = 5= UX > Equation 1
Symbol Definition Typical units
U, Volumetric productivity of the bioreactor igp\;\c/)g\;]\f/trég//zzor
V., The working volume of the bioreactor m?or L
P Price of the bioreactor Dollars ($)

As depicted in Figure 1.1, the PCR can be used to gauge whether a manufacturing technology is
economically viable and permits comparison between alternative approaches. In essence, the PCR
can serve as an optimization function to be maximized. To improve the PCR, either the performance
must be enhanced, the cost reduced, or both.

In the cost model component, various layers or levels are depicted that enable assessments to be
conducted at granularities for different use cases. A PCR can be focused solely on the bioreactor, or it
could cover the entire facility, including all upstream process (USP) and downstream process (DSP)
areas. Table 1.1 lists examples of PCRs for various levels.
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Figure 1.1. Schematic of the overall modeling framework consisting of a bioreactor performance and cost model
component to assess the performance-to-cost ratio.

Table 1.1: Examples of PCR ratios at various levels of technology or business evaluation. Metrics can be based
on total biomass as wet cell weight (WCW) or dry cell weight (DCW), or even a specific biomass component like

protein.
Performance
Level Cost Parameter PCR
Parameter
. . . Total O ti c L .
Enterprise Profit Margin otal Uperating Profitability (e.g., $ Profit / $ Cost)
Expenses
otal Product Cost of Goods Sold
Manufacturing output (COGS, includes Net Margin (e.g., kg WCW / $ Cost)
P depreciation)
ll Facilit ital Effici
Facility Overall Facility Total Facility Cost Capita clency

Output

(e.g., kKTon DCW/yr / $1,000,000 Facility)

Overall Process

Final Product Output

Installed Process Cost
(USP + DSP)

Capacity to Cost Ratio
(e.g., KTon DCW/yr / $ Installed Cost)

Cell Culture . Installed Process Cost [Upstream Capital Efficiency
Biomass Output

Process (Upstream Only) (e.g., KTon DCW/yr / $ USP Installed Cost)
Bioreacto . . .

Installed o 'r Bioreactor Installed Productivity-to-Cost Ratio

. \Volumetric

Bioreactor . Cost (e.g., kg WCW/m3 BR Volume / $)
Productivity
Bioreacto . . .

Bioreactor V(I)leetrirc Bioreactor Purchase Productivity-to-Cost Ratio

o Price (e.g., kg WCW/m3 BR Volume / $)

Productivity
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A significant challenge of this ongoing work will be identifying the simplest biological models that will
be compatible with complex physical models of large-scale bioreactors. This will require balancing a
model’s predictive power for a given application with its mathematical complexity and computational
intensity so that the various components can be coupled without system overload. Figure 1.2 depicts
how the various model components might be overlapped to perform a given function. The greater the
overlap, the greater the model’s complexity and the number of parameters required. Highly complex
genome-scale models and metabolic flux analyses will be indispensable in generating more
productive cell lines and high-performing, low-cost media. However, it is doubtful that they should be
(or can feasibly be) coupled with the more sophisticated physics-based models that govern the
bioreactor environment. We speculate that once the most salient aspects of a cell line’s growth and
metabolism are deduced, a simpler model can be used downstream for process optimization.
However, nothing precludes breaking down a design challenge into small components and using more
specialized models individually before attempting to build a larger interconnected digital twin.

Food Product
CellLine(s, ; ;
) BlOlOglcal Genome-scale Models (GEM) +
) Cell) Model
Cell Culture Media ( ) Metabolic Flux Models

Phys | C al Mechanistic

(Bioreactor)
Models

 —

Bioreactor Design .
and Conditions Mechanistic

Increasing Nmber of Biological Parameters

Multi-scale

Increasing Nmber of Physical Parameters

—

Finite Element
Computational Fluid Dynamics & Mass

“Bioreactor (Equipment) Costs '

Bioprocess

=

Manufacturing Facility Process and Utility Costs

Development / Desigh Sequence

a
%
Increasing Nmber of Cost Parameters

ﬂ Facility & Construction Costs

>l
-

Secondary Infrastructure

Figure 1.2: Coupling of model types to create systems of tractable complexity for bioreactor and bioprocess
design. The degree of overlap between the biological, physical, and cost models represents the total model
system’s computational intensity.

1.1 The performance model

The performance model is composed of three distinct, nested components: the cell growth model, the
bioreactor environment model, and the bioreactor system model (Figure 1.3). With this approach, the
cellular response to prevailing conditions can be applied to multiple potential microenvironments in
the bioreactor while the overall operating mode and control dynamics of the bioreactor are captured
computationally by the bioreactor system model. The focus of this report is on the cell growth model.
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Future work will describe the remaining model components and how they are coupled, culminating in
a performance model that can be adapted to different cell lines and bioreactor designs.

Bioreactor System Model

Bioreactor Environment Model

Current State
CONCENTRATIONS
Biomass (Live and Dead) Bioreator

Nutrient Substrates (Glc, Gln, 02) Conditions
Catabolites (Lac, CO2, NH4) Ao T.P.pH, Hy,
Osmolality 1
Fluid Element i Surface Bubble
Rupture Model
Changes
over time
increment 02MassTranslel €02 Mass Transfer

Feed Flow Rates (OTR) Model (CTR) Model
_— DIFFERENTIALS

Based on Material Balances

Feed Nutrient
Concentrations — T

02Gas N2 Gas Dispersion
Dlsperslnn Mndel Model

" Flow Cofigurations of:
- Feed Streams
- Recycle Streams
- Cell Retention Device

Perfusion FlowRate___,

Cell Bleed Rate, >

Liquid Mixing and
Energy Dissipation

Model
N2 Sparge
Gas Jet Model

Harvest Schedule Reaction Growth and death rates
Specific consumption rates
Rates ) .

Spefic production rates

f Cell Growth Model \ 02 Sparge
Gas Jet Model

e o - con

<= Agitator Speeds

= Gas Sparging Rates

. | Mass transfer rates
- | Energy dissipation rates

Figure 1.3. Overview schematic of the performance model, consisting of three individual component models.
The cell growth model

The cell growth model predicts cell growth, metabolism, and viability based on substrate and
metabolite concentrations as well as physical forces (e.g., shear) that are simulated by the bioreactor
environment model. For CM production, the primary goal of the cell growth model is to capture the
predominant processes driving the accumulation of cell mass and cellular composition. The equations
and parameters that describe these processes are primarily aimed at cell line characteristics and the
surrounding liquid medium, which defines the cells’ immediate environment. How they interact during
cell proliferation and/or differentiation is crucial to predicting rates of biomass accumulation and
substrate consumption, as well as the resulting shift in the composition of the extracellular medium.
The cell growth model is discussed in detail in Section 2.

The bioreactor environment model

The bioreactor model simulates the internal environment of the bioreactor, including substrate and
metabolite concentrations, gas dispersion, mass transfer, and shear forces that dictate the conditions
to which the cells are exposed. There are important trade-offs that must be considered, such as the
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delivery of oxygen and nutrients to the cell through mixing and gas sparging, which can also adversely
impact the cells if too vigorous. The biopharmaceutical industry is well aware that induced stress due
to bubble collapse can be the primary factor influencing cell viability and that the success of industrial
cell culture can largely be attributed to the use of shear protectants added to the medium. Modeling
the environment within the bioreactor is complex, involving the distribution of liquid shear rates, gas
bubble sizes and interfacial shear associated with gas jets around the sparger element, and the effects
of shear protectants that still need to be optimized for food applications. Also, physical conditions can
change with different bioreactor designs, and heterogeneity becomes more pronounced at larger
working volumes. Thus, the industry needs models that can account for the various physicochemical
microenvironments and predict the global performance of a bioreactor. When coupled with the cell
model, they will enable prediction of the bioreactor’s internal environment impact on the rates of cell
growth, inhibition, death, and even lysis. However, accounting for spatiotemporal aspects of the
bioreactor environment will increase complexity and computational requirements.

The bioreactor system model

The bioreactor system model governs the operation of the bioreactor, including feeding rates of
nutrients, gas flow for aeration and stripping, power for mixing, perfusion streams, cell bleed, and
harvest schedule. This component of the performance model acts as the outer envelope of the system
that dictates the material balance equations describing the desired mode of operation (e.g., fed-batch,
perfusion, continuous). It can be envisaged as the control system surrounding the bioreactor, whether
it is a stirred tank, airlift, hollow fiber, or some other design. The bioreactor environment and system
models will be further defined in future reports.

1.2 The cost model

A cost model can fundamentally examine production costs at different levels of capital and
operational expenditures. This flexibility permits users to evaluate aspects ranging from profitability of
the entire enterprise, capital efficiency, or bioreactor volumetric productivity (Table 1.1).

We envisage the cost model as a separate component to the overall model system supporting TEMs.
The cost model would take the same design specifications as those given to the cell and bioreactor
component models to determine performance. A cost estimate would then be assembled based on
these specifications, presumably drawing from a cost database for equipment, materials of
construction, and infrastructure tied to various scaling factors. Together with the performance metric
and the cost estimate, the PCR can be determined.

As a cautionary note, comparing PCRs of design options at different levels may not yield the same
conclusion. Capital efficiency can be a surrogate for total running cost only if the facility or equipment
design does not significantly impact non-capital expenses such as construction times, labor, utilities,
or material requirements. For example, an airlift bioreactor may be less expensive to build for a similar
capacity than a stirred-tank reactor but may require substantially more gas consumption, which may
result in its apparent PCR offset by increased utility costs. Similarly, continuous unit operations may
also reduce the labor and utilities required for repeatedly cleaning and sterilizing process equipment.
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Section 2. The cell growth model: key components, inputs,
and equations

2.1 Approach to cell growth modeling

In CM manufacturing, a key determinant of the volumetric productivity and overall economics is the
rate and efficiency of biomass generation. Beyond productivity, the cellular nutritional composition,
including protein and lipid content, will also be important determinants of sensory attributes and,
ultimately, market value. Therefore, a cell growth model for CM manufacturing should aim to describe
the predominant processes that influence the growth of cell mass and its composition in a large-scale
bioreactor.

Biological processes are highly complex, so different modeling approaches have been developed to
describe, predict, and understand them. The most common ways to model cell growth are empirical
models that describe patterns in observed experimental data and mechanistic models that rely on
causal theories of how biological functions work. A core challenge in modeling biological processes is
that many of the mechanisms governing a given process are only partially understood and remain
active areas of research. As our understanding of biology improves, mechanistic models become
increasingly complex, incorporating more parameters, pathways, and multi-scale interactions. While
statistical approaches such as machine learning can cut through complexity and draw predictive
inferences, they are limited by the need for vast amounts of data. In short, there is tension in selecting
a modeling approach for CM that balances ease of use, prediction, flexibility, data availability, and
complexity.*

Improving models for cultivated meat manufacturing

Previous TEMs of CM have relied on sets of assumptions for cell growth, the bioreactor environment,
and the overall process. In simplifying complexity through these assumptions (e.g., fixed growth rate,
homogenous mixing, static stoichiometry), the dynamic nature of how a cell responds to its
environment during production is lost. As a consequence, the model’s utility is limited by its inability to
test or predict the impact of changes to a process that a practitioner may wish to make, such as
alternative feeding strategies, scales of production, and bioreactor designs. While we acknowledge
that the full dynamic complexity cannot yet be completely captured, we suggest that cell growth
models for CM can be improved, which in turn can inform future TEMs.

It is highly unlikely that any single model can satisfy all future needs as CM technology continues to
develop, particularly with the anticipated variety of CM products. Rather than a single tool, such
mathematical models should be viewed as a toolbox from which the appropriate tool can be selected.
In any case, we believe that the toolbox for the cell growth component should accommodate the
following needs:

! While a full review of different modeling approaches is out of the scope of this report, additional discussion in
relation to complexity is provided in Section 4.
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1. Predict bioreactor volumetric productivity as a function of controlled growth conditions,
operating mode, primary substrate concentrations in the starting medium, and addition of
concentrated feeds and/or perfusion medium. The availability of the primary carbon, nitrogen,
and energy substrates has a direct impact on their consumption and the formation rate of
inhibitory metabolites, which can restrict the bioreactor’s performance envelope by suppressing
growth rates. Estimating system productivity is the first step in establishing, comparing, and
ultimately improving PCRs. Physical factors such as shear can also limit bioreactor productivity
but will be addressed in subsequent work.

2. Optimize bioreactor feeding strategies and operating modes from the standpoint of raw
material costs and bioreactor performance as a function of the rate and timing of substrate
addition. Once bioreactor volumetric productivity can be predicted, the model should enable the
evaluation of the quantitative trade-offs between the cost of medium components and their
relative contribution to overall productivity through the accurate prediction of substrate
consumption and feed conversion ratios. Moreover, the effect of restricting the supply of a
substrate will often increase the efficiency of its use as well as reduce the formation of inhibitory
metabolites.

3. Enable bioreactor design and evaluation by capturing the effects of heterogeneous
conditions on overall performance. Localized depletion of substrates can occur as a result of
insufficient mixing or control overshoot, resulting in concentration gradients or transients. Of
primary importance is oxygen due to its low solubility and therefore high potential for depletion
zones in a large bioreactor, as well as other potential non-idealities.

4. Improve bioprocesses. Study the impact of and trade-offs between various physical and
biochemical conditions on the overall system performance in addition to substrate feeding
strategies and operating modes. Ideally, the model parameters would include temperature and
pH, which have broader optimization potential.

5. Evaluate cellular adaptation strategies and alternative primary substrates, such as the
inclusion of pyruvate and alpha-ketoglutarate, and their impact on PCR.

6. Predict quantitative benefits of altered biochemical pathways as a result of adaptation and/or
genetic manipulation.

Notably absent from this list is media optimization. While the development of efficient, low-cost media
for the proliferation and differentiation of animal cells will be critical to the success of CM, evaluating
media composition is not the subject of this paper. It is assumed here that the bulk of media design
will be conducted at small scale and probably not in fully controlled bioreactors. Typically consisting of
well over 40 individual components, the basal media composition would be too complex to represent
all interactions mathematically, in addition to those associated with high cell density bioreactor
culture. Not only is the maximum growth rate in a given medium a function of factors such as pH,
temperature, and substrate concentrations, but it can also be affected by the ratios between certain
amino acids, trace elements, and growth factors. Models for media optimization applications are
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certainly of value but would emphasize multicomponent metabolic flux analysis and highly specific
cell::factor interactions.

For the models proposed in this paper, the base medium and the maximum growth rate it can support
are considered inputs, not outputs. Our focus instead is on the major changes in substrate
concentrations as a consequence of their consumption, the associated accumulation of the major
waste metabolites, and their overall effect on bioreactor process performance. Inherent in these
assumptions is that (1) the basal medium’s minor components do not change significantly or their
consumption is predictable by a constant yield factor and (2) the intrinsic maximal growth rate does
not change appreciably. Most animal cell culture media contain the full complement of essential and
nonessential amino acids in addition to the major substrates to support the highest possible growth
rates, and their uptake contributes to a significant fraction of final cell mass (Hosios et al. 2016).
However, they are assumed not to limit growth, alter growth rate, or change the consumption pattern
of the primary substrates. As we show in this report, this last assumption may not always be valid.

Modeling approaches for animal cell growth and metabolism

Animal cell metabolism is considerably more complex than that of microorganisms, both in the
number of biochemical pathways at work and the number of required nutrients. A brief overview of
animal cell metabolism is offered in Appendix Al. A diagram of the associated biochemical pathways
is also provided in Figure A1.1, showing the metabolite species that change to the greatest degree
during growth.

In short, the energy required for animal cell growth is naturally provided by the catabolism of carbon
and energy substrates, glucose, a sugar, and glutamine, an amino acid. Under conditions of rapid
growth, glycolysis is the primary contributor to energy production from the consumption of glucose,
resulting in the production of lactic acid. Glycolysis occurs even though the greatest energy is
produced via oxidative phosphorylation through the TCA cycle, ending in the formation of carbon
dioxide. This phenomenon is known as the Warburg Effect, which occurs even if oxygen is available in
excess. Glucose also has an anabolic role in contributing 5-carbon sugars (pentoses) to the synthesis
of nucleotides.

Glutamine is typically the main contributor to the nitrogenous base of nucleotides and to the synthesis
of nonessential amino acids and protein synthesis more generally, but can also be consumed as an
energy substrate, resulting in the release of free ammonia. It is well established that glucose and
glutamine are partially substitutable as energy sources in mammalian cell culture media (DiMasi and
Swartz 1995). Each provides unique biosynthetic precursors but is complementary for the production
of other metabolites and energy (Miller, Wilke, and Blanch 1989). Thus, glycolysis and glutaminolysis
are jointly regulated to provide sufficient energy required by cells, depending on the availability of
these major energy substrates (Jeong and Wang 1995).

The rate of glucose and glutamine consumption directly determines the production rates of their main
waste products of lactic acid, ammonium, and carbon dioxide. It is also well established that all three

of these metabolites can inhibit the growth of most animal cells if allowed to accumulate and can even
result in cell death at higher concentrations.
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To be of predictive value, any model will need to address most if not all of the following key factors
governing animal cell growth in a bioreactor. The approach presented is primarily empirical, relying on
observed correlations between related variables, and reflects the most common mathematical
approach to modeling the key factors that dictate cell growth.

e Nutritional factors: the principal energy substrates that are consumed by the cell during growth
processes and are deterministic of cell growth rates. The main natural substrates include
glucose, which is the main substrate for ATP production via glycolysis, and glutamine, which
supplies nitrogen for the synthesis of other amino acids as well as energy when needed.
Additionally, oxygen is consumed to support ATP production via oxidative phosphorylation and
cycling of NADH, a critical energy carrier and reducing agent. The relative uptake and metabolism
of these substrates depend strongly on their availability to the growing cells.

e Inhibitory and cytotoxic factors: the metabolic by-products known to inhibit cell growth or
viability. These include lactate produced as the by-product of glycolysis, ammonium produced as
the by-product of glutaminolysis, and carbon dioxide as the by-product of cellular respiration.
Accounting for the osmolality of the cell culture media is also important, as fluctuations in
osmolality have been shown to inhibit cell growth. In addition to quantifying growth inhibition,
modeling cell death is also relevant in predicting viable biomass accumulation and culture
viability. Viability of the proliferation stage culture is critical when followed by a cell
differentiation step, especially under stressed conditions of nutrient starvation, inhibitor toxicity,
and shear that may be expected in high-density, large-scale CM manufacturing.

e Temperature and pH: these factors can influence the growth rate by altering the kinetics of
chemical reactions, the solubility of inhibitory factors, protein stability, and the cell’s overall
metabolism. Temperature and pH also have an overarching impact on bioreactor dynamics.

e Cellular response times and dynamics: the time it takes cells to respond to a sudden change in
conditions will shed light on transient conditions that may occur in a large-scale bioreactor. The
cells may be moving through different zones with various degrees of mixing and substrate
concentrations, including oxygen. Understanding cellular response to such conditions that recur
at high frequency will be necessary to quantify the effects of large-scale cell culture.

In this section, we describe the simplest mathematical cell growth model that attempts to capture
major aspects of cell growth dynamics, leading to the formation of biomass, and the consumption of
the primary substrates that contribute most to cost. In addition to the primary substrates, other
macrometabolites would be included if they have a significant effect on the physical chemical
environment as they are formed or consumed and/or have a direct impact on the cells’ rate of growth
or metabolism during cultivation in a given medium. This approach creates an initial framework to
clarify cause and effect as well as to allow identification of the most relevant parameters.

However, to address all of the above aspects, more complex models may be required. Examples are
introduced later in the report with additional details presented in Appendix A2. In Section 3, we will
review the literature to assess how experimental data fit with the proposed equations and discuss
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data gaps and limitations. Knowledge of typical cell sizes, mass, and composition is also discussed, as
this information is essential to normalizing data across studies.

It is important to note that the models outlined in this report should not be interpreted as the totality
of cell growth modeling but rather as an improved foundation on which to build. For many of the above
factors, complexity can be added by accounting for other parameters or interaction effects, which are
discussed where appropriate. This complexity may be included in future models tailored to different
use cases and production scenarios, or to interrogate different questions or trade-offs.

2.2 Biomass generation and bioreactor productivity

Understanding the rate of biomass accumulation in cell culture is critical to quantify key process
metrics. Biomass is typically quantified on the basis of hydrated (wet) or dry cell mass, but it can also
be quantified in terms of protein or lipid content, if these are critical quality attributes.

Cell concentrations have historically been expressed as a number of cells per unit volume (e.g.,
millions of cells/mL). However, during growth, the rate of increase of biomass and cell number may
diverge, thus cell count may be a poor proxy for cell size and mass. Moreover, the composition (e.g.,
lipid or protein content) of the cell can change independently of biomass or cell number, such that the
rate of product formation may not align with total biomass formation either.

To account for these variables, biomass accumulation is commonly measured by the metric of
volumetric productivity of the bioreactor, which represents the amount of product mass generated per
unit time per unit of bioreactor volume. In the case of CM where biomass is the product, this can be
defined as the total wet cell weight (WCW), dry cell weight (DCW), or just protein mass, depending on
the desired output.

The bioreactor volume can be defined as either the working volume or total volume, with the former
more commonly used in practice and applied in Equation 2.2a. Thus, the volumetric productivity is the
overall reaction rate of product formation divided by the bioreactor’s volume, which can be applied to
any bioreactor type:

u, = r *V /V Equation 2.2a
X X culture w
Symbol Definition Typical units

g product/Lr/day, where

U, Volumetric productivity of the bioreactor
Lr = reactor volume

X Biomass concentration or product mass g WCW/L, g DCW/L, g protein/L

ry Overall rate of product formation g DCW/L/day

Vutture Total volume of the cell culture L or m?
Vi, Working volume of the bioreactor L or m*
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Batch culture

Depending on how a bioprocess is operated, Equation 2.2a may appear different. For example, during
a constant-volume process such as batch culture, the ratio V.../ V. Will reduce to 1 as the culture
volume equals the working volume, reducing Equation 2.2a to:

U = r
X X

During exponential growth in a constant-volume culture, the rate of biomass formation is proportional
to the product of the specific growth rate (u) and biomass concentration (X) such that:

= *
TX—,Ll Xv

Thus, volumetric productivity is governed by both how fast cells grow and how many viable cells (X,)
are present at any point in time. Typically, a batch bioreactor is harvested when volumetric
productivity reaches its highest value.

The specific growth rate (p) of a given cell line represents the rate of growth (typically per
hour or day for animal cells) of a population of cells normalized to the population size. Most
animal cell culture practitioners measure and report doubling time, which is the time it takes
for a population of cells to double. The doubling time (t,) can be transformed to the specific

growth rate (u) by the equation: u =1In(2)/t,

Callout box 1. Relationship between doubling time and specific growth rate.

Continuous (chemostat) culture

In a chemostat bioreactor, fresh nutrients are continuously added while spent media and cells are
removed simultaneously. This maintains a steady-state condition in which the biomass and nutrient
concentrations remain constant over time. Under steady-state conditions, the volumetric productivity
can be expressed as the product of the specific growth rate and the steady-state biomass
concentration:

u, = n, * X Equation 2.2b
Symbol Definition Typical units

u Specific growth rate of cells 1/day or 1/hour

X, Concentration of viable biomass at steady state s WCW/L or g DCW/L

In a chemostat operating at steady state, the specific growth rate is equal to the dilution rate, which is
defined as the feed flow rate divided by the working volume:

u=D=F/V, Equation 2.2c
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Symbol Definition Typical units

D Dilution rate 1/hr or 1/day

F Feed flow rate L/hr or m®/day

To maximize volumetric productivity in a chemostat, it is desirable to maximize both the viable
biomass concentration and specific growth rate. However, there is typically a trade-off between these
two factors. For example, at high dilution rates, cells may wash out before reaching high biomass
concentrations. And at high biomass concentrations, nutrient limitations or accumulation of inhibitory
by-products may reduce growth rates. Thus, the maximum attainable productivity in a chemostat or
bioreactor under continuous operation is a combination of the biomass concentration that can be
maintained and the maximum specific growth rate that can be sustained at steady-state.

Differentiation and maturation

For processes involving cellular differentiation and/or maturation to achieve tissue-like structures,
assumptions of exponential growth do not necessarily apply. In these cases, alternative growth
models are required. In the proliferation stage, biomass concentration increases by cell division,
where each daughter cell is the same size and mass as its parent. In contrast, during differentiation,
the cells can increase in size and mass, but cell number may remain constant. There may also be a
maturation stage where additional mass may be gained (e.g., by deposition of extracellular matrix to
form the final tissue). Certain CM processes may incorporate differentiation and maturation; however,
existing TEMs have not modeled mass gain during this stage.

In its simplest form, biomass production during differentiation or maturation can be modeled by a
constant linear growth rate; however, more complex models may be appropriate in some cases:

T, = kgrowth Equation 2.2d
Symbol Definition Typical units
My Rate of viable biomass increase g DCW/day or cells/day
Kgrowth Linear growth rate constant g DCW/day or cells/day

For a differentiation stage cell culture with linear growth, Equation 2.2a still applies to determine the
volumetric productivity at any point in time. However, at the point of harvest, the volumetric
productivity is simply determined by the final state, corrected for the nominal reactor volume:

— * :
UX o Xfinal/ tfinal chlture/ VW Equation 2.2e

It is also important to note that only viable cells contribute to ongoing growth. While Equation 2.2d
describes growth in terms of viable biomass, the total biomass produced may include both live and
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dead cells, as well as non-cellular components such as extracellular matrix. It is therefore also
important to account for cell death rates.

Accounting for cell death

While maintaining high rates of viability is always sought after, cell death is an inherent part of any
culture process. Despite this, cell death has not yet been modeled in CM TEMs. Distinguishing living
from dead cells may be important in CM processes, as shear stress, inhibitory by-products, and
nutrient depletion are likely to occur in large-scale and high-density cell cultures. While all cells are
expected to be dead by the time of final product consumption, high death rates may be particularly
difficult to tolerate in a two-stage process where cells are seeded onto a scaffold for continued
differentiation and maturation.

For exponential growth, the true specific growth rate (u) is applied to the instantaneous viable
biomass concentration (X,). However, a fraction of viable cells is lost over time due to cell death, which
reduces the actual rate of biomass accumulation. Thus, the net rate of viable biomass accumulation
becomes the difference between the true specific growth rate and the specific death rate (J):

— _ * — * .
Ty = (pn 0) X . X Equation 2.2f
Symbol Definition Typical units
0 Specific death rate (assumed to be 1st order with 1/day

respect to viable cell concentration)

U True specific growth rate (1st order) 1/day
Happ Apparent specific growth rate 1/day
Iy Net rate of viable biomass formation g DCW/day or cells/day

Similarly, for a non-exponential stage such as differentiation, the net rate of viable biomass change is:

— — — 3 .
"xv (kgrowth kdeath) kapp Xv Equation 2.2¢
Symbol Definition Typical units
kgmWth Constant (linear) growth rate g DCW/day or cells/day
Kgeath Constant (linear) death rate g DCW/day or cells/day
kapp Apparent linear growth rate after subtracting the death s DCW/day or cells/day
rate
o EE;;:;G of viable biomass formation (differentiation s DCW/day or cells/day




Therefore, the apparent growth rate is always less than the true growth rate.
Dead cell accumulation and lysis

The accumulation of dead biomass (X,) results from the death of viable cells and is offset by lysis,
which is the degradation or removal of dead biomass:

= * — * .
T 0 Xv A Xd Equation 2.2h
Symbol Definition Typical units
0 Specific death rate (assumed to be 1st order with | 1/day

respect to viable cell concentration)

X4 Concentration of dead biomass g WCW/L or g DCW/L
A Specific lysis rate 1/day
[ Net rate of dead biomass accumulation g DCW/L/day, g WCW/L/day, or cells/L/day

The lysis rate factor can be used to determine the amount of cell debris and/or lysate that may appear
in the extracellular medium, some of which may be recovered with the product.

Total biomass

Taken together, the total biomass (X,) in the bioreactor at any time is the sum of the viable (X,) and
dead (X,) cells:

X =X + X Equation 2.2i
t v d

2.3 Kinetic expressions for cell proliferation and differentiation

The kinetics of cell proliferation and differentiation are the primary drivers of bioreactor productivity,
and understanding the key factors influencing these rates is paramount to effective process design
and modeling. What are the key factors that should be included in a model?

Temperature and pH are critical factors affecting growth rate and other physical and chemical
processes. Although each is typically tightly controlled near its respective optima for a given cell line,
real bioreactor conditions such as incomplete mixing can result in cells being exposed to suboptimal
microenvironments. Additionally, some processes may be better controlled at conditions that are
suboptimal for maximizing growth rate but enhance other physical factors such as oxygen solubility or
mass transfer. For these reasons, a model that can account for some of these trade-offs would be
useful.

Substrate concentrations may also vary and impact growth rates, especially as the substrate is
depleted. This is particularly true when the main carbon and energy substrates are controlled at low
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concentrations to minimize waste metabolite formation. However, this strategy is sensitive to control
overshoot or poor mixing, which may result in cells experiencing nutrient starvation or excessive
inhibitory metabolite production. Lastly, shear forces in a bioreactor from agitation, mixing, sparging,
and bubble entrainment and rupture can also impact growth, inhibition, death, and lysis rates.
Capturing the dynamics of each of these factors is also important for modeling purposes.

Taken together, a cell’s specific growth rate (), introduced earlier, can be considered a state variable,
representing the cell’s physiological status under certain conditions at a given time. Growth rate is not
a constant as assumed in prior TEMs, but rather a function of the many factors described previously.
For modeling purposes, only those factors expected to change under the simulated scenario should be
included in the model. The multiplication of these factors then represents the total impact on the
maximum specific growth rate, reducing it to the true growth rate in the culture at any given time. As a
general expression, Equation 2.3a represents the global function of key factors influencing the state of
a cell’s growth rate, and each of these primary factors can be separately modeled by mathematical
equations. Each of these factors is briefly introduced below.

L = W xf(T, pH) * NF * [IF * SF Equation 2.3a
ma
Symbol Definition Typical units
Himax The maximum possible specific growth rate for a given cell line under 1/day or cells/day

defined conditions?

T Temperature °C

pH pH -

NF Nutrition factor representing nutrient substrate concentration effects Dimensionless (0-1)
IF Inhibition factor representing the cumulative effect of inhibiting Dimensionless (0-1)

metabolites or by-products

SF? Shear factor representing the overall effect of various types of physical Dimensionless (0-1)
stresses the cell experiences over time

* For modeling purposes, it is assumed that the conditions include a medium composition where all nutrients,
including growth factors, are available in excess.
2 Shear factors will be described in more detail in a future report on the bioreactor environment model.

Temperature

Temperature can have a strong influence on a variety of cellular activities that affect cell growth,
including metabolism and gene expression. Higher temperatures have been correlated to increased
developmental rates that are attributed to faster metabolic and protein synthesis rates (Gillooly et al.
2002), but temperatures significantly above the optimal growth temperature can result in heat shock.
Mildly hypothermic conditions have also shown enhanced expression of recombinant proteins, which
is believed to be due to the lower growth rates allowing more expression of non-growth-associated
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proteins (Sunley, Tharmalingam, and Butler 2008). However, no model of CM has yet accounted for

temperature’s important influence on growth rate.

Specific Growth Rate (1/hr)

10 20 30

Temperature (0C)

40

Figure 2.3a: Typical profile of specific growth rate as a function of temperature for most mammalian cells.

Between the extremes of heat shock and cold shock lies the Arrhenius range, where the relationship
between reaction (i.e., growth) rate and temperature can be modeled using the Arrhenius equation
(Figure 2.3a). Arrhenius’s law describes how chemical reaction rates vary with temperature when the
activation energy is constant. For biological systems, the specific growth rate can be approximated

within the Arrhenius range by the Arrhenius equation:

—-E
a

nw = Ae™ Equation 2.3b
Symbol Definition Typical units

3] Specific growth rate at temperature T 1/day

A Pre-exponential or “Frequency Factor” 1/day

E. The energy needed for activation of the reaction J/mol

R Universal gas constant 8.314 J/mol*K

T Absolute temperature Kelvin (K)
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As we will show in Section 3, this relationship is useful for experimentally determining the Frequency
Factor (A) and the Activation Energy (E,) by fitting growth rate data to the linearized form of the
Arrhenius equation. By plotting the natural logarithm of the specific growth rate versus the reciprocal
of absolute temperature, a straight line can be obtained:

In(u) =In(A) -E/R*1/T

In this linear form, the slope of the line equals -E,/R, from which the activation energy can be
calculated. The y-intercept corresponds to In(A), allowing determination of the Frequency Factor (A).
Once these parameters are determined for a given cell line, the specific growth rate can be
well-predicted for the temperatures within the Arrhenius range, which can be useful for process
optimization. It is also likely that the same parameters could be applied to multiple cell lines by
expressing growth rate as a fraction of specific growth rate at each cell line’s respective optimal
temperature (T,,,). This could enable broader predictive modeling with fewer parameters.

pH

Similar to temperature, most animal cell cultures are maintained at pH values at or near the
physiological pH of the organism’s blood supply. For most species relevant to CM, this means pH will
be held between 7.0 and 7.6, with the more alkaline pH used for the culture of some aquatic species
(Rubio et al. 2019). The shape of the pH tolerance profile is generally broader than that of temperature
but can be highly cell line-dependent. Some cell lines are more sensitive to alkaline conditions and
others are more sensitive to acidic conditions, but most cell lines are more tolerant of alkaline
conditions than acidic conditions.

Unlike temperature, there is no readily available model to describe the effects of pH on cell growth
based on first principles because there are several mechanisms at play. For example, pH can influence
the cell’s metabolism as well as the buffering capacity of the media, which can have numerous and
complex downstream effects, such as changes in osmolality. For this reason, pH effects are often
modeled using empirical equations that are fit to experimental growth data.

The nutrition factor: Substrate effects on growth rate

The nutrition factor (NF) collectively accounts for the effects of several key substrates that the cell
relies on for growth: oxygen, glucose, and glutamine. These substrates are typically consumed in the
greatest quantities in animal cell culture and are also most likely to become depleted or limiting.

The NF can be mathematically described using Monod-type kinetics where each substrate is
represented by saturation kinetic terms using a parameter referred to as the Monod constant,
originally adopted from Michaelis-Menton enzyme kinetics. Figure 2.3b graphically depicts different
Monod kinetic models. The first model represents classical Monod kinetics where growth rate
increases proportionally with increases in substrate concentrations at low concentrations, but exhibits
saturation at higher substrate concentrations where the reaction rate is limited by the cells’ ability to
absorb and metabolize the substrate. This single-parameter model can be extended to include
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substrate inhibition at high concentrations (Model 2). Finally, Model 3 is a two-parameter model that
represents a maximum substrate concentration at which there is a complete cessation of cell growth.

Cell Specific Growth Rate (1/hours)

o

tgk

b

Maximum Specific Growth Rate

1/2 Maxighum Specifc Growth Rate

IC100, = Substrate Concentration abdy
which growth ceases complete

Ks = Monod Constant for Substrate S

€—=—=—=—= ===

0 Substrate Concentration (mM)

Figure 2.3b: Monod-type models of the effect of substrate concentration on cellular growth rate.
Model 1: original Monod model for saturation kinetics; Model 2: single-parameter model for substrate
inhibition; Model 3: two-parameter model for substrate inhibition.

In bioreactor systems, multiple substrates can become limited simultaneously. In such cases, the NF
can be expressed as the product of independent saturation terms, assuming noncompetitive
interactions among the substrates:

NF = NF * NF * NF
02 Glc Gln
= 0z Gle Gin Equation 2.3c
02 + K, Glc+ K.. Gln + K.
Symbol Definition Typical units
NFo, NFg NFg, [Nutrition factor for oxygen, glucose, and glutamine substrates Dimensionless
tration of [ lutamine in the liquid ph
[02], [Glc], [GIn] Concentration o o?<ygen, glucose, and glutamine in the liquid phase M
(extracellular media)
Koz, Kaie, Kain The half-saturation (Monod) constant for oxygen, glucose, and glutamine |mM
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While glucose and glutamine can likely be modeled using classical Monod kinetics, high
concentrations of oxygen can inflict oxidative stress and become inhibitory at higher concentrations.
In this case, the NF,, in Equation 2.3c can be substituted with:

02 02 a -
NFOZ o [ 02 + K, ][1 B 1100, ] Equation 2.3d

Symbol Definition Typical units

The concentration of oxygen in the liquid phase at which total growth

1610002 Lihibition is observed

mM

a Model exponent that determines the curvature of the relationship Dimensionless

These equations collectively offer a more robust and dynamic modeling approach to substrates
compared to previous TEMs that assumed no growth-limiting substrates, a well-mixed reactor with no
substrate-deficient zones, and subinhibitory concentrations of waste metabolites such that the growth
rate was constant.

As described previously in the overall cell growth model (Equation 2.3a), the non-energy substrates,
including growth factors, are assumed to be available in excess and therefore do not impact the
growth rate. However, this model can be customized to include other substrates if they are involved in
important kinetic or stoichiometric trade-offs. For example, a model of avian cells may include NF,,,
as avian cells tend to use asparagine rather than glutamine as a principal energy substrate (Lohr et al.
2014).

Substrate starvation effect on death rate

For most essential nutrients or substrates, at very low concentrations, cells can undergo substrate
starvation, leading to cell death. The rate of death under starvation is not constant but depends on the
specific substrate and its concentration. For example, oxygen and glucose starvation may lead to rapid
death, whereas depletion of certain amino acids may have a more delayed response.

Models have been proposed to represent this concentration-dependent death rate. The most common
kinetic model is an inverse-Monod relationship, which assumes that the death rate increases with
decreasing substrate concentrations, reaching a maximum death rate at a substrate concentration of
zero:

o
Il

K
0 * [ —3L ] Equation 2.3e
S S max KS’D + S
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Symbol Definition Typical units
55 Death rate due to depletion of substrate S 1/hr or 1/day
Ss,max Maximum death rate observed upon starvation of substrate S | 1/hr or 1/day
Ksp Death rate half-saturation constant for substrate S mM
[S] Concentration of substrate S mM

However, other empirical models have used either a simple linear relationship (Equation 2.3f) or a
Monod-like model modified by Hill (Equation 2.3g) to include an additional exponent to make it a
two-parameter model. These models are useful when experimental data suggest a different pattern of
response or provide a better fit to the data:

85 = SS,max —as Equation 2.3f
6. = & * L Equation 2.3
S “Smax K;D +5]" q .38
Symbol Definition Typical units
o Inhibition coefficient to inhibition parameter 1/(mMe-day)
n Hill coefficient (exponent) that controls sigmoidal steepness |Dimensionless

The inhibition factor: Waste metabolite effects on growth rate

The inhibition factor (IF) collectively accounts for the effects of several key inhibitory by-products on
cell growth, namely lactate, ammonia, and carbon dioxide. Although previous TEMs have accounted
for these factors, they did so by assuming strict limits where growth does not occur above a certain
boundary, which may be an oversimplification of inhibitory effects. Additionally, the inhibition effects
of osmolality have been well-characterized, but have yet to be incorporated into CM TEMs.

Similar to the NF, the IF can be represented by multiplying the effects of individual inhibition factors,
assuming noncompetitive interactions among them:

— k % *k .
IF = IFLaC IFOSm IFcoz IFNH4 Equation 2.3h



Symbol Definition Typical units
IF . Inhibition factor for lactate Dimensionless (0-1)
IF o Inhibition factor for osmolality Dimensionless (0-1)
IF\ua Inhibition factor for ammonia/ammonium Dimensionless (0-1)
IFcos Inhibition factor for carbon dioxide Dimensionless (0-1)

In reality, this relationship may be an oversimplification if significant synergistic or antagonistic
interactions exist between inhibitors. In such cases, interaction terms, weighting coefficients, or
additional parameters may need to be added to the model.

Various expressions have been used in the past to represent the degree of inhibition caused by a
specified concentration of inhibitor. A commonly used expression to describe a single inhibitor is
based on a half-maximal inhibition (IC50) function, where growth rates decline as inhibitor
concentration increases:

K, IC50,
IFI = [ W ] = [ m ] Equation 2.3i
Symbol Definition Typical units
IF, Inhibition factor for inhibitor I Dimensionless
K; Inhibition parameter for inhibitor I mM
IC50; Concentration of inhibitor I that reduces growth rate by 50% [mM

Alternative models may be used when inhibition follows a different profile. Ultimately, the choice of
inhibition model will depend on experimental data fit, mechanistic understanding, and trade-offs
around simplicity versus accuracy. Figure 2.3c shows various models (functions) used in the literature
to model inhibition.
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I'Il Himax Maximum Relative Specific Growth Rate

®
® ®

1/2 Maximum Specifc Growth Rate

IC100, = Inhibitor

Relative Growth Rate (1/hours)

I
I
1

1C50,= 1 Concentration above

Inhibitor Concentration : which growth ceases

where specific groweth rate is | completely
reduced by 50% of maximum |
1
0 v
0 Inhibitor Concentration (mM) [I]

Figure 2.3c: Various models of growth inhibition. Model 1 is an inverse Monod relationship (Equation 2.3i);
Model 2, using Equation 2.3j, is also a single-parameter model; Model 3 is simply a straight line; Model 4 is a
two-component model using Equation 2.3k; Model 5 is a three-parameter model that uses an additional
exponent to Model 4 to give more control of the curvature.

The single-parameter models have some shortcomings in that their representation at high inhibitor
concentrations is not realistic. Typically, there is a concentration at which growth is fully arrested,
which is represented as the IC100. Equations 2.3i (Model 1) and 2.3j (Model 2, where the IF decays
exponentially) are widely used but do not predict zero growth at any concentration and would
underestimate inhibition at very high concentrations:

—kI
IFI = e Equation 2.3j
Symbol Definition Typical units
IF, Inhibition factor for inhibitor I Dimensionless
k Decay coefficient that determines steepness of inhibition 1/mM
I Concentration of inhibitor I mM

A more flexible, two-parameter empirical approach can also be used (Model 4 in Figure 2.3c; Equation
2.3k). This model is useful when experimental data show a threshold effect:

@
I .
IFI = [1 — IC1001] Equation 2.3k
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Symbol Definition Typical units

1C100; Concentration of inhibitor I that fully stops growth mM
@ Inhibition exponent that controls curve steepness dimensionless
I Concentration of inhibitor I mM

Model 5 in Figure 2.3c is a three-parameter model giving more control of the curvature where there
may be a very abrupt transition but requires another parameter. Still more models can be borrowed
from the microbial end-product inhibition literature, depending on the mechanism (Straathof 2023).
Any of these models offers a more realistic representation of growth inhibition than a binary threshold
that cannot be exceeded, as assumed in TEMs published to date. These models at least allow some
optimization of the cell culture system to be performed in silico to account for trade-offs.

Effect of cytotoxic waste metabolites on cell death rates

If certain waste metabolites are cytotoxic at high enough concentrations, they will cause cell death in
addition to slowing the growth rate. Typically, these concentrations are higher than those leading to a
reduction in the growth rate, but there can be an overlap in which cells grow more slowly and die
simultaneously (Cooper and Youle 2012).

Monod-type kinetics can be used to model cytotoxic death similarly to substrate or metabolite
inhibition. The following commonly used model is similar to Equation 2.3e proposed for substrate
starvation, except that the death rate increases with rising inhibitor concentrations instead of
decreasing substrate concentrations:

81 = 61‘max * [ ﬁ ] Equation 2.3l
Symbol Definition Typical units
0, Death rate caused by inhibitor I 1/day or 1/hr
01 max Maximum death rate caused by inhibitor I 1/day or 1/hr
Kip Half-maximum death rate parameter for inhibitor I mM
I Concentration of inhibitor I mM

If the death kinetics are nonlinear or threshold-like, a sigmoidal expression similar to Equation 2.3g
can be constructed, providing greater flexibility by introducing an exponent that adjusts the curvature
of the death response:
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6 = 6 « | —L Equation 2.3m

I Imax n n
KI’D + 1
Symbol Definition Typical units
n Hill coefficient that controls sigmoidal steepness Dimensionless

When multiple media components and/or metabolites independently contribute to cell death, the total
death rate is the sum of the individual death rates, assuming no interactions among them:

0 = SLaC + 8602 + SAmm + 505m Equation 2.3n
Symbol Definition Typical units
0 Total death rate 1/day or 1/hr
Olac, Ocoz, Oamm, Oosm | Death rate by individual waste metabolites 1/day or 1/hr

Similar to growth inhibition, this death relationship may be an oversimplification if significant
synergistic or antagonistic interactions exist between inhibitors. In such cases, interaction terms,
weighting coefficients, or additional parameters may also need to be added to the model.

2.4 Substrate consumption and metabolite production rates

To formulate material balances for critical nutrients and by-products in cell culture, mathematical
models are typically employed to predict the rate of nutrient consumption and waste generation per
unit of cell growth. Thus far, existing CM TEMs have assumed fixed amounts of substrate consumed
per unit of cell number or cell mass generated. In these models, cell-specific substrate consumption
and waste metabolite production are strictly and linearly proportional to growth rate. However, this is
not realistic, especially at low growth rates when cells still need to expend energy to maintain
homeostasis even though they are not rapidly proliferating.

A semi-empirical model used in the biochemical engineering field is represented by Equation 2.4a and
is based on (Pirt 1965)) work on microbial cultures. Here, a cell’s consumption of a carbon and energy
substrate (q,) is a function of its specific growth rate, a yield factor, and a maintenance term that
accounts for substrate consumption even if the cell is not actively growing;:

9, = (H/YX/S) + m Equation 2.4a




Symbol Definition Typical units
y Specific growth rate 1/day or 1/hr
l/cell/d
ds Cell-specific consumption rate of substrate S EEZIZGDC/WE/IZI;;
Yys The true growth-associated cell mass yield of substrate S gDCW/mmol or gDCW/g
- Specific consumption of substrate S for non-growth cell mmol/cell/day or
S

maintenance

mmol/gDCW/day

In this semi-empirical model, the maintenance term is normally associated with carbon and energy
substrates such as glucose and glutamine, since the cell requires energy to maintain homeostasis. For
non-energy substrates such as amino acids used solely for biosynthesis, the maintenance term is
assumed to be zero, meaning that these are only consumed during active cell growth.

When Equation 2.4ais plotted on linear coordinates, the relationship between specific substrate
consumption (q.) and specific growth rate (u) forms a straight line:
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Figure 2.4a: Graphical representation of the linear model (Equation 2.4a) for substrate consumption.

The slope of the line is equivalent to the inverse of the true yield coefficient (1/Y) and the y-intercept is
equal to the maintenance term. This linear behavior, represented by these two factors, fits
experimental data for a single carbon and energy substrate. Thus, this relationship offers a practical
method to determine yield and maintenance requirements for most cell types, including
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microorganisms, although they have a significantly lower maintenance requirement as a percentage of
total substrate consumption than animal cells, which are larger and more complex.

Apparent yield

Because data and multiple growth rates are required to determine a true yield, apparent yield (Y’ys) is
often reported in the literature because it is easier to determine. Apparent yield is defined as the
observed ratio of biomass formed to substrate consumed, including both growth and maintenance
requirements. It is essentially what has been used by published TEMs. These coefficients are valid if
they are measured at similar growth rates that are assumed in the model. The apparent yield is
represented by the equation:

g, = H / Y'X/S Equation 2.4b

The apparent yield can be related to the true yield by deriving Equation 2.4c from Equations 2.4a and
2.4b:

YX/S = Y'X/S ( 1 + ms/ i ) Equation 2.4c
The apparent yield can vary with the growth rate and is less consistent than the true yield. As depicted
in Figure 2.4a, the apparent yield can be visualized graphically as the slope of the line from the origin
(rather than the y-intercept) to the data point representing the measured specific consumption rate for
a given growth rate. Therefore, the true yield (Yys) is larger than the apparent yield (Y’y;s) by the term
m¢/u. Because the slope is the reciprocal of yield, the true yield line has a shallower slope than the
apparent yield. The higher the data points and/or the slope on the graph, the more substrate is
required to make cell mass, and the lower the biomass yield. The literature review of experimental
data in Section 3.5 will add more clarity to these points.

Metabolite formation as a function of growth rate

The formation rates of the key metabolites are often modeled as a proportional function of cell growth
rate. If little is known of the origins of metabolite formation or if it is derived from multiple substrates,
its specific production rate can simply be described as:

q = MK * YI/X Equation 2.4d
Symbol Definition Typical units
q; Specific formation rate of inhibitor I mmol/cell/day or mmol/gDCW/day
Yix Yield of metabolite I per biomass formed mmol I/10° cells or g I/gDCW

When the bulk of a waste metabolite is derived from a single substrate (e.g., lactate from glucose or
ammonia from glutamine), then its production can be modeled as a function of substrate consumption
using a yield factor that reflects the stoichiometry of the metabolic pathway:
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q, = Yy * q Equation 2.4e

1/S
Symbol Definition Typical units
qs Specific substrate consumption rate mmol/cell/day or
mmol/gDCW/day
Yys Yield of metabolite I from substrate S mmol I/mmol S or gI/gS

Equation 2.4e can be used when the stoichiometry is mechanistically known. For example, 1 mol
glucose = 2 mol lactate in anaerobic glycolysis, while 1 mol glutamine = 2 mol ammonia via
glutaminolysis and full deamination.

Osmolality changes with metabolite accumulation

As cells consume nutrients and produce waste by-products, the total osmolality of the cell culture
medium changes. As discussed previously, osmolality changes are also important to model, as
osmolality can influence overall growth rate and viability.

The osmolality can be estimated at any time in the process by summing the molar concentrations of
dominant solutes, including ions from base addition and counterions used to control pH:

Osmo = Osmo,,., + [Glc] + [Gln] + [Lac] + [NH4] + [Na+] Equation 2.4f
Symbol Definition Typical units
0smo,,ee Osmolality of the fresh culture medium excluding glucose and glutamine| mOsm/kg
[Gle], [Gln], Molar concentrations of glucose, glutamine, lactate, and ammonia mM
[Lac], [Amm]

Concentration of the counter-ion in the extracellular medium as a result
[Na+] . mM
of base addition for pH control

As discussed further in Section 3.5, it is desirable to minimize the consumption rates of substrates (qs)
and the yields of inhibitory metabolites from an efficiency and cost standpoint, as bioreactor
volumetric productivity will be affected.

Models of ATP and energy balance

Throughout the development of this report, we realized that unstructured empirical models based
solely on external substrates, such as those presented above (Equations 2.4a-2.4e), suffer from
limitations that could affect their ability to capture all of the phenomena that have been observed in
the literature. While linear models and fixed-yield coefficients of substrates are effective under
defined conditions, they do not account for intracellular phenomena, which can lead to significant
errors when applied to changing environments and growth rates. This is especially true during batch
culture when substrate and metabolite concentrations change rapidly. ATP is the primary energy
carrier in most cells and is derived from the catabolism of the primary substrates supplied externally.
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In effect, ATP is an internal substrate. Using the same rationale for external substrates, the specific
rate of ATP production to provide the necessary energy for growth and cell maintenance can be
described similarly to Equation 2.4a:

Uyrp = (n/ YATP/S) tm,, Equation 2.4g
Symbol Definition Typical units
y Specific growth rate 1/day or 1/hr
l/cell/d
Qarp Cell-specific production rate of ATP from substrate S zzzlgeDC/Wa/Zl.;/r
Y arp The yield of ATP from substrate S mmol/mmol
Marp The maintenance requirement for ATP mmol/cell/day or

mmol/gDCW/day

Such a model based on ATP production and overall energy balance could serve as the unifying
currency for anabolic and catabolic processes. Similarly, the primary intracellular reducing agent,
NADH, can also be viewed as a common product of substrate catabolism. Another way energy
homeostasis is represented in the literature is by the metric adenylate energy charge (AEC), which
tracks ratios of ATP, ADP, and AMP as proxies for metabolic health. AEC tends to stay in the range of
0.8 t0 0.95 in metabolically “healthy” cells across prokaryotes and eukaryotes (De la Fuente et al.
2014). However, using AEC in a model requires the inclusion of AMP and ADP in addition to ATP.

ATP and NADH production can both be measured in cell cultures, and quantified data from studies are
included in Section 3.5. The use of pooled or pseudo-metabolites is discussed in Section 4.4 along
with structured energetics models. Additional substrate and energy-based modeling approaches are
included in Appendix A2.

The systems of equations presented in Section 2 provided a framework for the literature review
presented in the next section. We focused our search on data and parameters that are directly
relevant to the relationships representing key phenomena and interactions in bioreactor culture.



Section 3. Cell growth model: Critical review and data gaps
for model parameters

A comprehensive literature review was conducted using the modeling framework
outlined in Section 2 as a guide to finding the most relevant parameters.

3.1 Overview

This section reviews the literature, supplemented with survey data collected for this project, to
summarize existing data and contextualize information for the key factors and parameters in the
modeling framework and equations presented in Sections 1 and 2. We examine data availability,
quality, and gaps, as well as the extent to which existing data from biopharmaceutical-relevant cell
lines could be used as a starting point for modeling cell lines relevant to CM applications. While the
literature review primarily examines steady-state interactions among macronutrients, metabolites,
and rates of cell growth, inhibition, and substrate consumption, we include data on cellular response
times and the effects of temperature and pH. Metabolite influences are summarized individually
where possible, though their complex interactions sometimes necessitated combined discussion or
separate sections. Section 3 is intended to mirror the structure of Section 2, where literature is
reviewed and discussed for:

e Cell mass and composition (3.2)
e Cell proliferation and differentiation kinetics (3.3)
e Growth inhibition and death rates due to waste metabolites (3.4)

e Overall cell growth stoichiometry, including substrate consumption and metabolic by-product
production as indicators of metabolic efficiency (3.5)

This section also serves as a systematic guide for CM researchers to understand the types of
experiments to perform, data to collect, and how these data plug into models that inform scale-up and
optimization of commercial processes.

3.2 Cell size, mass, and composition

As discussed in Section 2.2, the volumetric productivity of a bioreactor is defined as the amount of
product mass generated per unit of time per unit of bioreactor volume. In CM, where biomass is the
product, it can be defined as WCW or DCW, or in some cases by the mass of certain nutritional
components. Understanding and measuring cell mass and composition is therefore crucial to
accurately model the productivity of CM processes. What do we know about the mass and composition
of animal cells?
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A variety of cell types, including pluripotent stem cells, myoblasts, fibroblasts,
fibro-adipogenic progenitors, and mesenchymal stem cells, are used as starting material in the
production of CM. The cell types vary in their stemness and potency, which influences many
downstream characteristics that can affect manufacturing outcomes.

Cells can also vary significantly in their size, mass, density, and composition. Accordingly, we
cite the type of cell that corresponds to the data being discussed throughout this section.
Future models should be tailored to the specific cell type being used in production, with data
collection guided by the recommendations throughout this report.

For a detailed review of cultivated meat cell lines, we direct readers to the following resources

(Deep dive: cultivated meat cell lines; Cell lin velopment and utilization trends in th
cultivated meat industry). Please visit our cell lines database to locate cultivated meat cell
lines to use in your research program.

Callout box 2. Cell types used in cultivated meat production.

Deriving cell mass based on cell size

Mass is often estimated based on cell size (i.e., diameter) and density. Assuming a spherical shape and
a common cytoplasmic density of 1.06 g/cm?, mass can be approximated by the equation:

cell mass = cell density * 4/3m(d/2)?

In our review of the literature, we found that most animal cells (in suspension) are between 10-20 pm
in diameter, which was also validated by survey data received from CM companies (Figure 3.2a). An
exception to this may be adipocytes, which can accumulate lipids during maturation processes and
grow to sizes beyond 100 pum in diameter. However, as discussed below, the size of a hydrated cell is a
poor proxy for its overall mass or relevant compositional makeup. Therefore, we do not recommend
using the above approach to derive accurate values for cell mass.
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Fig. 3.2a: Summary of cell size data from our literature research. Cell size and mass data were rarely reported
directly and these values were calculated from reported cell mass (dry or hydrated), assuming 75% cell water
content unless otherwise stated, cell density (specific gravity) of 1.06 (except for Humbird, which used 1.03),
and assuming a spherical shape. The dry mass was often the reported value. Three experimental data points
from CM companies were not shown in the figure to prevent crowding and due to the lack of cell mass data.
These were: Cow Myoblast, 14.5 um; Cow Pluripotent ESC/iPSC, 10.0 um; and Cow Mesenchymal MSC, 20.0 ym.
Caution is advised in over-interpreting these data. As we will see in the next section, dry cell mass has a weak
relationship with cell volume.

Key takeaway
The size of a hydrated cell is a poor proxy for its overall mass or composition, making
cell size and diameter measurements lower value for modeling efforts.
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Hydrated (wet) cell mass (WCW)

The overall mass of a cell is highly dependent on its water content, which in turn is influenced by the
composition and osmolality of the surrounding medium. Several CM modeling studies have assumed
the intracellular water content of cells to be 70%, which is intended to approximate that of
conventional meat (Humbird 2021; Tuomisto, Allan, and Ellis 2022). However, survey data collected
from companies suggest intracellular water content in their products may be as high as 83%.
Furthermore, water content in multiple approved CM products spanned 75-96% (Table 3.2a).

Study or product Water content Notes
assumed or measured

Humbird, 2021; 70% Assumed from textbooks
Tuomisto, 2023

Sinke, 2023 70-80% Assumed based on values provided by
collaborating companies

Mattick, 2015 83% Assumed by authors

Mission Barns: cultivated pork fat 86% Measured moisture content in product

evaluated by regulators

Vow: cultivated quail >80% Moisture content specification in product
evaluated by regulators

GOOD Meat: cultivated chicken 89% Measured moisture content in product
evaluated by regulators

UPSIDE Foods: cultivated chicken 75-80% Measured moisture content in product
evaluated by regulators

Wildtype: cultivated salmon 75-90% Moisture content specification in product
evaluated by regulators

Believer Meats: cultivated chicken 95-96% Measured moisture content in product
evaluated by regulators

Other company data 70-83% Survey data collected as part of this
project

Table 3.2a. Water content assumed in prior CM models and reported in real-world products.

The variance in reported values for water content may be based on differences in harvesting and
measurement techniques that may result in excess extracellular water being carried over, especially
when measurements are taken directly from harvested cell pellets. Nevertheless, initial data indicate
that the water content of cultivated cells is likely not a fixed number and may be higher than assumed
in previous TEMs. Research efforts that measure the dry mass of cultivated cells directly can prevent
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the need to make error-prone assumptions for water content in future TEMs. Product developers
should also consider the effect of water content on the nutritional density of the end product, and how
it may influence equivalence to conventional meat, consumer perception, and market value.

Key takeaways and data gaps
e The reported water content of cells and real-world products varies between
~70-95%, likely due to differences in methods for weighing cell mass
post-harvest.
e A10% error in total mass could significantly affect techno-economics.
e Future research should measure dry cell mass of CM cells and products to avoid
making error-prone assumptions for hydrated cell mass.

Dry cell mass (DCW)

While the DCW measurement provides the best means to normalize data across studies (see Section
3.5), these measurements are infrequently provided in the literature. A study by Széliova et al.
represents the best available dataset for the dry mass and composition of animal cells (Széliova et al.
2020). The study evaluated the dry mass and biomass composition of 13 different CHO cell lines. The
dry cell mass ranged between 199 and 293 picograms per cell line, with an average of 264 pg. These
values correspond with the range of dry cell mass measured during the growth phase of L1210 (mouse
lymphocytic leukemia) cells, where values reported were between ~125 and 300 pg per cell
(Miettinen et al. 2022), as well as hybridoma cells reported between 250 and 470 pg per cell (Széliova
et al. 2020). Importantly, the authors also noted that there is only a weak correlation between dry cell
mass and cell volume, implying that dry mass needs to be quantified rather than attempting to
estimate it from cell volume or diameter (Figure 3.2b).

Assuming a water composition of 75% for an average CHO cell with a mass of 264 pg, it can be
calculated that the hydrated CHO cell mass would be 1,056 pg, roughly one-third of the 3,000 pg
hydrated mass assumed in prior CM modeling (LCA/TEA) studies (Humbird 2021; Sinke et al. 2023).
Measurements from C2C12 (mouse myoblast) cells suggest a hydrated mass closer to 4,000 pg
(Tuomisto, Allan, and Ellis 2022), with other modeling efforts choosing 3,300 pg or 3,500 pg (Mattick
et al. 2015; Tuomisto and de Mattos 2011). To test whether or not CM modeling studies overestimated
the mass of cells, we plotted data from CM modeling studies and studies where DCW was actually
measured. Overall, the data show that DCW and WCW assumptions in CM modeling studies display a
large discrepancy with real measurements from animal cells of a similar size (Figure 3.2c).
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Figure 3.2b. Dry cell mass has a weak relationship with overall cell volume across 13 different CHO cell lines.
Data from (Széliova et al. 2020). Re-printed according to CC BY 4.0 license.
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Figure 3.2c. Comparison of DCW and WCW values between five CM LCA and TEM models alongside other studies
where DCW of animal cells was actually measured (WCW values for these studies were calculated assuming
75% hydration). Data from Studies included mouse hybridoma, BHK, CHO, and chicken fibroblast and embryonic
stem cells.

We were unable to collect additional dry mass data from companies or researchers, which highlights
the need for dry cell mass measurements across species and cell types as a major data gap in the
field. It is strongly recommended that researchers and companies in the sector report measurements
of both hydrated and dry cell mass of their cells. Because hydrated cell mass measurements may be
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variable, dry cell mass measurements are crucial to ensuring mass quantification is consistent and
comparable across research groups.

Key takeaways and data gaps

e Prior TEMs have assumed a single cell’'s WCW is ~3,000 pg, however, data from
animal cells suggest this may be overestimated by a factor of 2-3x.

e The DCW of CM-relevant cell lines is a major data gap.

e DCW needs to be quantified rather than attempting to estimate it from cell
volume or diameter. The following publications contain protocols that may be
used for dry mass measurements of single cells in suspension (Széliova,
Ruckerbauer, et al. 2020; Széliova, Schoeny, et al. 2020; Miettinen et al. 2022)
and as adherent cells (Liu et al. 2020).

Biomass composition

Biomass composition refers to the relative proportions of macromolecules such as proteins, lipids,
carbohydrates, and nucleic acids within a cell, in addition to water. Composition is a key determinant
of the nutritional value of CM and is important to capture in modeling, as it affects stoichiometric
calculations, nutrient demands, and yield estimates. Humbird reported the composition of animal cell
dry mass as approximately 70% protein, 15% lipids, 10% carbohydrates, and 5% nucleic acids
(Humbird 2020)).> More recent data from 13 different CHO cell lines suggest an average dry mass
composition of approximately 46% protein, 14% lipids, 12% nucleic acids, and 2% carbohydrates,
with the remaining 26% being attributed to remaining minerals, metabolites, and small molecules
(Széliova et al. 2020). Inorganic constituents, namely minerals and salts, are often referred to as ash
in proximate analyses by combustion. Ash content is sometimes included and sometimes not in
compositional data, making comparisons more difficult. The only compositional data from cultivated
meat-relevant cells (chicken fibroblasts) reported values of 80% protein and 13% fat on a dry mass
basis (Laura Pasitka et al. 2024). These data are summarized in Figure 3.2d.

2 Humbird also supplied a molar ratio of elemental carbon, hydrogen, oxygen, and nitrogen (CHON), and we were
unable to identify additional data sources that confirm or dispute these values.
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Figure 3.2d: Biomass composition data of CHO cells compared to assumptions in prior TEMs. Humbird noted
that the typically reported 5-10% remaining mass fraction of minerals, metabolites, and small molecules was
excluded from the total, as this fraction was assumed to have a similar elemental make up and was normalized.

In the CHO cell data from Széliov4, it is notable that there is variance even among different cell lines of
the same cell type, with protein content varying by 20%, lipids by 5%, RNA by 4%, and DNA and
carbohydrates by 1%. Although the samples were collected at mid-exponential phase when cells
undergo rapid division in the S and G2 phases of the cell cycle, other studies have documented a
strong relationship between dry mass accumulation and cell cycle phase (Miettinen et al. 2022),
suggesting that some variance may be accounted for by different populations of cells captured at
different points along mitosis.

Another consideration is the overall phase of the culture (Figure 3.2e). RNA content is known to
increase dramatically to support high rates of cell growth during the exponential phase before
returning to baseline levels in the stationary phase (Darzynkiewicz et al. 1979). Nucleotide synthesis
can even be rate limiting under conditions of rapid growth. Conversely, DNA content is at its lowest in
the exponential phase while total cell mass is at its highest due to the recruitment of additional protein
synthesis machinery. Because cells will be cycling throughout each phase of the cell culture, mass
changes during the cell cycle must be considered on the individual cellular levels, while mass changes
during different culture phases need to be assessed on the population level.
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Figure 3.2e: Overview of cellular content changes during cell culture phases. Adapted from Wang et al. 1979.
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Changes in cell size

Evidence of the effect of a cell’s growth rate on its size has been demonstrated by several research

groups. Figure 3.2f shows the increase in cell size as measured directly by cell diameter (converted to
volume; (Ozturk and Palsson 1991; Frame and Hu 1991a), and dry mass content (Dimasi 1992). While

average cell size is related to the cell type, the effect of the cell size of a given type can vary

significantly based on growth rate alone. It is apparent that cell volume and mass can change by more

than a factor of two over the range of growth rates typically experienced in a cell culture.
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Figure 3.2f: Cell size and mass as a function of specific growth rate.
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Cell size appears to be tied to the cell cycle. Cell protein and RNA content have been shown to
decrease in cells when their growth slows, consistent with Figure 3.2f (Ozturk and Palsson 1991;
Dimasi 1992). Concurrently, the fraction of cells in the GO + G1 phase increases during the
deceleration phase, accompanied with a decrease in the size of the population in the S phase. The
fraction of cells in the M phase did not change, suggesting that cells in the M phase do not divide, even
though they have enough DNA synthesized.

Liu et al. used computationally enhanced quantitative phase microscopy to study populations of
proliferating cells, which enabled highly accurate measurements of cell dry mass of individual cells
throughout the cell cycle (Liu et al. 2020). Using this method, they found that the coordination of
size-dependent cell cycle regulation and size-dependent growth rate modulation allowed cells to
maintain accurate cell mass homeostasis while proliferating. They speculated that the same
regulatory processes might also be operative in terminally differentiated cells.

More studies will be needed to disentangle the regulatory mechanisms and interplay between these
two phenomena, which are just beginning to be understood (Liu, Yan, and Kirschner 2024). However,
developers of CM processes should be cognizant of the relationships between cell cycle status, cell
size, and composition, because they are directly relevant to volumetric productivity of biomass
components and for determining optimal harvest timepoints.

Outside of the few examples provided in this section, we were not able to find any additional detailed
biomass composition data from CM-relevant cell lines. The overall lack of biomass composition data
has also been highlighted by other investigators, as composition is also crucial in the related field of
genome-scale metabolic modeling (Gomez Romero and Boyle 2023). In their review, the authors
noted that accurate biomass measurements taken from cells grown in defined media are needed, as
well as biomass compositions of different cell types of the same organism, which can guide additional
genome-scale model reconstructions derived from the parent model.

Key takeaways and data gaps

e Optimizing for specific compositional makeup in CM processes will be
important, as the product’s value will be highly dependent on its nutritional
content.

e The field needs a better understanding of compositional variability between
species, cell types, and even of the same cell line at various rates of growth.
Investigators should consider computationally enhanced quantitative phase
microscopy for accurate measurement of cell dry mass of individual cells
throughout the cell cycle (Liu et al. 2020).

e Cell mass and composition are major data gaps for the field. Compositional data
should be obtained from cells grown in commercially relevant, defined media
and as a function of growth rate.
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3.3 Kinetics of cell proliferation and differentiation

Overview of doubling time and specific growth rate

As previously described by Equation 2.2a, a key parameter to determine the rate of biomass formation
is the specific growth rate (u) of the cell. There are many factors that influence growth rate, including
nutrient and growth factor availability, metabolite inhibition, and environmental conditions such as
temperature, pH, and oxygen levels (Equation 2.3a; (Hauser et al. 2024). Accordingly, doubling time
(or specific growth rate; Callout box 1) is a trait that can vary depending on culture conditions. In
modeling biological systems, specific growth rate is commonly viewed as a state variable representing

the cell’s state.

An example of cell growth flexibility is provided below, where doubling times of eel fibroblasts were
shown to vary dramatically depending on the nutrient availability (i.e., serum), temperature, and
whether the cells were grown in adherent or suspension conditions (Figure 3.3a). As shown by these
data, it’s important to acknowledge that doubling times can change significantly when moving to
suspension culture in the more complex bioreactor environment. Therefore, it is important for
researchers to report specific growth rates in relevant bioreactor environments rather than rely on
observations solely from adherent cell cultures in plastic dishes, as these may not be as

representative for modeling CM manufacturing.
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Figure 3.3a: Example of growth rate variability of eel fibroblast cells under different culture conditions. Data

from (Zheng et al. 2024). Reprinted according to CC BY 4.0 license.

Intrinsic limits for how fast a cell can grow are likely to exist depending on the cell type and species.
For example, cell progenitors (cells with more stemness) tend to grow faster than primary cells.
However, these limits have generally not yet been fully characterized. To provide a sense of a potential
lower boundary for animal cell doubling time, our review of the literature found that a lung cell line
from the Chinese hamster had the shortest reported doubling time (i.e., highest specific growth rate)
of an animal cell line in vitro at 8 hours (Yamano-Adachi et al. 2020), while some T-cell populations

Sﬁ


https://creativecommons.org/licenses/by/4.0/

reportedly double in vivo at 4-5 hours (Hwang et al. 2006).® With this information, alongside previously
collected survey data (Ravikumar et al. 2023), it is reasonable to expect most doubling times for CM
production will be in the range of 12 to 24 hours (4 =.058 to .029 hr?) after optimization of culture
conditions, with potential for some cell lines to grow at even faster rates.

Key takeaways and data gaps

e The maximum specific growth rate (minimum cell doubling time) at
near-optimal temperature and pH is an intrinsic property of a given cell type.

e Acell’'s actual growth rate is a flexible trait that varies depending on culture
conditions and nutrient availability. Researchers should report doubling times
or specific growth rates in relevant media and bioreactor environments rather
than solely from adherent cell cultures.

e Researchers should report and graph specific growth rate (u) to show
relationships with culture conditions since it is linearly related to growth, rather
than doubling time, which has an inverse relationship.

e Most doubling times for cultivated meat production are likely to be in the range
of 12 to 24 hours (u =0.0578 to0 0.0289 hr-1 or 0.138 to 0.693 day-1) after
optimization of culture conditions, with potential for some cell lines to grow at
even faster rates.

Effect of temperature on cell growth rates

As discussed in Section 2.2, the temperature can have a strong influence on a variety of cellular
activities that affect cell growth. Despite this, there is limited experimental data for temperature’s
effects on animal cell growth rates, especially for cultivated meat-relevant cell lines.

Using available data from a study on mouse lymphoblasts (Watanabe and Okada 1967) plotted in
Figure 3.3b), we applied the linearized form of the Arrhenius equation previously described (Equation
2.3b) to the six data points from the study. The middle four points in Figure 3.3b (31-37 °C) fell along a
straight line. Thus, growth rate in this range is well modeled using the Arrhenius relationship with
temperature. In the study, the authors also determined the activation energy in this range to be 27.5
kcal/mol (or 115 kJ/mol), which likely could apply to other cell lines as well. The study also found that
the G1 and S phases were the most temperature-sensitive, with G being particularly prolonged at
reduced temperatures. This suggests that cell growth is regulated primarily by energy-dependent
processes in the Ga phase, and that lower temperatures disproportionately slow these steps, leading
to an overall reduction in growth rate from its optimum.

* As a point of comparison, the fastest-growing bacteria, V. natriegens, has a doubling time of just 14 minutes.
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As the CM sector matures, it will be important to collect additional data on temperature effects in the
complex environment of a bioreactor. In a bioreactor, the temperature influences crucial aspects tied
to productivity, including oxygen and nutrient solubility, and diffusion and mass transfer rates. For
example, temperature increases lead to increases in oxygen diffusion but decreases in oxygen
solubility, viscosity, and surface tension. Despite lower oxygen solubility, the cumulative effects can
outweigh lower solubility, resulting in increased oxygen uptake and kLa values (Muralidharan, Bolduc,
and Davis 2024).
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Figure 3.3b: Effect of temperature on specific growth rate of mouse lymphocyte cells (L5178Y) replicates the
Arrhenius profile. Data from (Watanabe and Okada 1967).

This may lead to the hypothesis that maintaining cells at higher temperatures will always achieve
faster growth rates. However, even small increases above the normal physiological temperature can
lead to viability issues due to perturbations in protein folding, proteostasis, and heat shock response
pathways, with some studies demonstrating cell-type sensitivity (Dorrity et al. 2023). Lower
temperatures can favor certain metabolic processes over others and can change membrane dynamics,
potentially enabling greater resistance to culture conditions (Al-Fageeh and Smales 2006).
Accordingly, downward temperature shifts during the exponential phase are now commonly practiced
in the biopharmaceutical field, as this has been shown to achieve an improved balance of cell growth
rates and prolonged periods of productivity (Xu et al. 2019).

Taken together, while the optimal growth temperature may be static in a small-scale adherent culture,
the optimal growth temperature in a bioreactor environment could be a moving target. CM
manufacturers will need to determine if similar downward temperature shifts could improve
productivity in their bioprocesses, which can be assisted with modeling approaches (Wang, Wang, and
Chen 2022).
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Key takeaways and data gaps

e The optimal growth temperature in a bioreactor process is not necessarily the
temperature that supports the maximum specific growth rate of the cell (Topt)
at tissue culture scale. In the biopharmaceutical sector, for example, downward
temperature shifts can enhance the productivity of recombinant proteins.

e Thus, the impact of temperature (and pH) on specific growth rates should be
understood so that biomass productivity can be optimized along with other
physical conditions in a bioreactor. For example, lower temperatures can
increase membrane rigidity and increase resistance to certain culture
conditions (Al-Fageeh and Smales 2006).

e Limited data exist for the effect of temperature on the growth rate of
CM-relevant cell lines. Researchers can repeat experiments by Watanabe and
Okada and use the linearized form of the Arrhenius equation (Section 2.3) to
describe the relationship.

Effect of pH on specific growth rate

Optimizing pH is another important factor to consider. pH is typically maintained at or near the
physiological pH of the organism. For example, human cell cultures are typically maintained at pH 7.4,
while chicken cell cultures have been maintained at pH 7.1 (Laura Pasitka et al. 2024) and bovine cell
cultures at pH 7.1 to 7.3 (Hanga et al. 2021; Tzimorotas et al. 2023). Data collected for this study
supports this, with reported optimal pH values ranging between 7.0 to 7.6. Divergence in pH is only
observed in insect cell cultures, which are typically held at more acidic pH levels between 6.0 to 6.4
(Letcher et al. 2024).

Similar to temperature, there are limited data available on the effects of pH on growth rate, especially
for CM-relevant cell lines. Figure 3.3c shows the approximate pH effects on growth rate for different
mouse and human cell lines. There are too few points to fit any mathematical model, but the data
suggest a bell-shaped curve that is skewed to either the basic or acidic side. Such a complex
relationship is probably best handled with an empirical correlation. Additionally, the study of pH on the
growth of over 20 different cell types by Eagle provides an excellent relative comparison of the pH-p
profiles (Eagle 1973). However, it is difficult to discern absolute growth rates since growth
measurements were based on protein accumulation.

SF'



1.2 o Murine Hybridoma (McQueen and Bailey, 1991)

B Human Melanoma (Taylor, 1984)

© Murine Hybridoma (Ozturk and Palsson, 1991)

0.8

0.6

0.4

Specific growth rate (1/days)

0.2

6 6.5 7 7.5 8 8.5 9

pH

Figure 3.3c: Effect of pH on the specific growth rate of various cell lines. The trend lines are presumed based on
the literature. Data from (McQueen and Bailey 1990; Ozturk and Palsson 1991; Taylor, Los, and Robinson 1984).

Looking forward, tightly controlling pH will be important in CM manufacturing, as deviations in pH can
influence protein folding and metabolism, which can impact the growth rate and cell viability. In
small-scale cell cultures, pH is controlled by buffers, which typically consist of CO,-bicarbonate
systems or buffering agents such as HEPES. In larger and higher-density systems, the pH can become
altered via the accumulation of metabolic by-products such as lactate and CO,, which form lactic acid
and carbonic acid in solution and usually necessitate further control.

In larger reactors, pH can be controlled via the addition of base and gas sparging. The addition of base
is a less preferred method, as mixing inefficiencies at larger scales can lead to localized pH
heterogeneity that may impact viability and increase the osmolality of the culture. However, it is often
required because a bicarbonate buffering system and controlled sparging cannot sufficiently counter
the shifts in pH. Sparging itself requires optimization and balancing of trade-offs related to agitation
rates, bubble size, gas rates, reactor design (e.g., available headspace), and process operation (e.g.,
perfusion vs. fed-batch).

Taken together, understanding the impact of pH on growth rate is an important consideration, but data
and representative mathematical models are limited. Added difficulty for modeling pH effects is
introduced when metabolic and/or physical trade-offs occur, and when calculating shifts in pH with
the multiple buffering components normally contained in cell culture media. These considerations will
be discussed in more detail in a future report on the bioreactor environment model.
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Key takeaways and data gaps

e Like temperature, optimal pH in a bioreactor process is not necessarily the pH
corresponding to the one supporting the maximum rate of growth at tissue
culture scale.

e Thus, the impact of pH (and temperature) on specific growth rates should be
understood so that biomass productivity can be optimized along with other
physical conditions in a bioreactor.

e Selecting an optimal pH for a bioreactor process is a challenge due to the many
biological and physical parameters it can interact with.

e Mathematically modeling changes in pH in a cell culture is especially difficult
because of the complex buffering dynamics of multiple medium components.

Differentiation kinetics and mass gain

According to a 2023 industry survey, 15/21 respondents said that their company includes or plans to
include a differentiation phase in its manufacturing process, with an expected duration of two to ten
days (Harsini and Swartz 2024). However, differentiation duration is trending downward as new
innovations are introduced. For example, CM companies have published several protocols on fat
differentiation (Miti¢ et al. 2023; Dohmen et al. 2022; L. Pasitka et al. 2022), with timelines for fat
differentiation recently demonstrated as short as one day (SuperMeat 2024). Likewise, recent
demonstrations in muscle cell differentiation suggest timelines may become shortened to two to three
days (Profuse, (Eigler et al. 2021). Statements from other companies suggest muscle and fat
differentiation times of four days (Meatable).

Implementing a differentiation stage is highly tractable from a biological perspective, as the pathways
underlying the differentiation of stem cells or precursor cells into mature muscle and fat tissue are
well understood. However, the necessity of a differentiation and maturation stage (hereafter referred
to as differentiation) in CM manufacturing is an open question in the field. On one hand, differentiation
may improve product quality aspects such as texture and nutrition, although it may or may not
increase overall biomass productivity. For example, a recent study from SuperMeat suggests that a
1.7-fold increase in mass during an averaged two-day differentiation could reduce production costs by
approximately 40% (SuperMeat 2024) depending on the relative costs of the proliferation and
differentiation stages. On the other hand, the addition of a differentiation step is expected to add time
and complexity to the process, as 75% of companies expect to perform differentiation in a separate
bioreactor from the proliferation stage (Harsini and Swartz 2024).

Thus far, differentiation has not been thoroughly modeled in existing TEMs, which have focused on the
proliferation stage only. To evaluate differentiation trade-offs in future models, it is critical to first
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understand the potential rate of mass gain during differentiation, which will determine the volumetric
productivity of the differentiation stage bioreactor.

Mass gain during differentiation

The most relevant and complete dataset for mass gain during differentiation can be found in a study
by Tuomisto et al. using C2C12 mouse myoblast cells (Tuomisto, Allan, and Ellis 2022). Over a 14-day
period of differentiation, protein content (and assumed proportional cell mass) increased (nearly)
linearly for the first nine days, with a ~128% mass gain reached by day seven. Linear regression
revealed a kg, (Equation 2.2d) equivalent to ~18% mass gain per day relative to the initial biomass.
This trend of initial linear mass gain aligns with other studies of C2C12 and immortalized bovine
myoblasts grown on fiber scaffolds (X. Li et al. 2024).

Assuming linear growth, as modeled by Equation 2.2d, simplifies the calculation of mass gain in the
differentiation stage. This implies that volumetric productivity remains constant over time. However,
as the data from Tuomisto et al. show, the rate of mass gain decelerates after about seven days,
possibly due to contact inhibition or nutrient limitations. As a result, there is a trade-off between
extending the differentiation stage to gain additional mass versus terminating the run due to declining
volumetric productivity.

To enable optimization of differentiation duration under more realistic kinetics, we developed a model
using an expression similar to saturation kinetics, with the differentiation rate declining as total
biomass increases:

Kn
T Equation 3.3a
growth growth X" + KZ l
Symbol Definition Typical units
Karowth, max ~ [Maximum specific growth rate at t=0 1/day
K gecel Biomass concentration at which growth g WCW/L
decelerates
n Saturation exponent controlling curve steepness  |Dimensionless
X Wet cell biomass concentration s WCW/L

And to represent the increase in protein content (as a fraction of cell mass) during differentiation, we
applied a sigmoidal transition:

min max min X
X = X + (x - X * Equation 3.3b
P P ( P P ) [X + K,,] q



Symbol Definition Typical units
xp Mass fraction of protein per unit cell mass g protein/g cell
L Initial (undifferentiated) protein content g protein/g cell
P
e Final (differentiated) protein content g protein/g cell
P
Kp Half-max protein saturation constant g WCW/L

These two equations were fit to the experimental data and provided an excellent match to observed
mass and protein accumulation (Figure 3.3d), yielding the following set of parameters:

Symbol Value
kgrowth, max 0.22 day-l (22% per day)
Kdecel 20 g WCW/L
n 6
xmin 40% DCW (10% WCW)
p
Nz 80% DCW (20% WCW)
p
K 200 g WCW/L
p

This analysis serves as an example of a model that can describe the deceleration of mass gain during
differentiation, as would be expected when the wet cell mass concentration approaches the density of
muscle tissue (~1,060 gWCW/L). The deceleration that is apparent in Figure 3.3d begins far below this
value; however, the data were collected in a 2D tissue culture format, which may not fully represent
3D tissue cultures. Nevertheless, the model illustrates how nonlinear curvature can be applied to fit
empirical data, which in this case begins at 22% protein increase per day (nonlinear) compared to
18% per day (linear regression) calculated by Tuomisto.

The model also demonstrates how to account for changes in cellular composition during
differentiation. While Tuomisto assumed that the dry mass and protein content increased
proportionally, this still needs to be validated experimentally (Tuomisto, Allan, and Ellis 2022). It is
more likely that in muscle cells, the rise in cellular mass increases at a different rate compared to the
protein fraction. It would be expected that total protein content would accumulate at a higher rate
than wet and even dry cell mass as the cells fuse, form fibers, and lay down extracellular protein.
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Figure 3.3d: Mouse skeletal muscle cell (C2C12) differentiation model using Equations 3.3a and 3.3b. A value of
50 gWCWY/L was arbitrarily selected as the initial seeding density prior to differentiation. Data from (Tuomisto,
Allan, and Ellis 2022).

Estimating upper bounds for mass gain during differentiation

One can also attempt to derive an upper bound for mass gain during differentiation based on
physiological values observed in vivo. Many studies noted that individual myofibers can increase
20-30% in volume during hypertrophy following resistance training, but this is for mature muscle
tissue. Quantifying mass gain throughout the entire developmental timeline from myoblast to myocyte
to myotube to myofiber is difficult, as mature myofibers can be composed of hundreds of fused
myoblasts, resulting in fibers that grow to several centimeters over many weeks, with variance in
these numbers depending on the muscle type and species (Frontera and Ochala 2015). The degree of
maturation and the secretion of extracellular matrix proteins are additional variables to consider.

Mass gain can be estimated by taking the length of the myofiber and the diameter of the fiber to
calculate the volume, then estimating the mass by the average muscle density of 1.06 g/cm?, and
finally dividing the mass by the number of nuclei or individual myoblasts that fused to make up the
fiber. While some Al-generated sources suggested that an over 10-fold mass increase is possible, we
were unable to identify specific studies that quantified these numbers throughout the entire
developmental process. In the study previously mentioned, the authors noted that differentiation was
modeled as a reduction in the number of cells required from the proliferation stage to achieve the
same final mass (Tuomisto, Allan, and Ellis 2022). Repeatable and standardized methods for
calculating mass gain during muscle differentiation will therefore be essential to ensuring values can
be compared across studies.

SF'



Fat differentiation involves a single cell accumulating lipids over time, making it more straightforward
to model based on volume increase. In humans, mature white adipocytes typically accumulate lipids
in a single lipid droplet that can range from 25 to 150 uym in diameter, occupying the majority of the
cell’s volume (Konige, Wang, and Sztalryd 2014). A meta-analysis in humans suggested that adipocyte
diameter was ~80 pm in lean individuals and >120 um in obese individuals (Q. Li and Spalding 2022).

Experimental data suggest that in vitro adipocyte differentiation protocols can approach in vivo cell
sizes. For example, primary bovine mesenchymal stem cells displayed a mean lipid droplet diameter
of 50-60 um following four weeks of differentiation and maturation (Zagury et al. 2022). Similarly, an
immortalized porcine mesenchymal stem cell line displayed a six-fold increase in lipid volume per cell
from day 11 to day 40, with the largest total volume recorded at nearly 100,000 um?, close to in vivo
adipocytes (Thrower et al. 2024). While these studies did not quantify mass, they suggested that a
large volume of lipids can accumulate over time during adipocyte differentiation. Further data are
needed to understand lipid accumulation and mass gain during shorter differentiation intervals. The
data also suggest that different modeling assumptions may be needed to analyze the productivity of
muscle and fat differentiation.

Key takeaways and data gaps

e More differentiation data are needed from relevant species and cells (e.g.,
muscle, fat, and extracellular matrix accumulation from fibroblasts) to
understand the extent of mass gain that can be achieved under different
conditions. There is a dearth of quantitative data, even from in vivo physiology,
to help guide CM processes.

e Special attention should be paid to protein and lipid compositional changes
during differentiation, as these will have a significant bearing on the nutritional
value of CM.

e The accumulation of protein mass in skeletal muscle differentiation could be
modeled using saturation kinetics (e.g., Equations 3.3a and 3.3b).

e Repeatable and standardized methods for calculating mass gain during
differentiation will be essential to ensuring values can be compared across
studies.

e More work is also needed to understand what factors are likely to limit cell
differentiation in vitro and whether kinetic relationships (e.g., Monod
growth-saturation constants) from suspension cultures are relevant.

Effects of substrate concentrations on cell growth and death rates

The nutrition factor (NF in Equation 2.3a) accounts for the effects of key substrates such as oxygen,
glucose, and glutamine on cell growth. To quantify growth kinetics as a function of substrate
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concentrations, we looked for published Monod half-saturation constants (K,) for the model outlined
in Equation 2.3c. We also searched for data sets where the growth rate was studied at different
substrate concentrations to derive estimated K, values for each substrate.

Oxygen

In cell culture, shifts in metabolism and decreases in growth rate have been observed at oxygen
concentrations below 1% of air saturation. The gas-phase partial pressure of oxygen in air is 0.21 atm
at 37°C, which corresponds to about 0.2 mM oxygen dissolved in the media (DO), reflecting the very
limited solubility of oxygen in water. In a salt solution more representative of a cell culture medium,
oxygen’s solubility is even less, at approximately 0.18 mM (180 uM). Thus, at 1% air saturation, this
corresponds to just 0.0018 mM (1.8 uM) DO in the extracellular medium, an extremely low
concentration for sustaining growth.

Using hybridoma cells, Ozturk and Palsson saw that growth became oxygen-limited in this range and
measured a Ky, value of 0.6% dissolved oxygen (~0.001 mM; (Ozturk and Palsson 1990). The same
group also examined the effects of serum concentration, dissolved oxygen concentration, and medium
pH on hybridoma growth in a batch reactor (Ozturk and Palsson 1991). They observed that growth
limitations occurred when DO fell below 5% (0.01 mM) of air saturation, suggesting that the K, for
hybridoma cells is likely below this value. However, from the data presented in the paper, the K,
appears to be further below this but could not be discerned due to low resolution.

Studies by Miller et al. in mouse hybridoma cells provide better data for the effect of oxygen on growth
(Miller, Wilke, and Blanch 1987, 1988). In these studies, continuous culture allowed for the best
separation of growth rate effects and substrate concentration effects on various metabolic
parameters. In this case, oxygen concentrations were varied over a wide range while maintaining the
same dilution rate. Figure 3.3e shows their data for the whole range tested, which included DO
concentrations as high as 100% air saturation. From oxygen uptake rate data, they established an
upper limit to the Monod half-saturation constant of 0.5% DO (0.001 mM), in agreement with Ozturk
and Palsson, and similar to that observed for yeast. The inset in Figure 3.3e shows the data at tested
DO concentrations as low as 0.1% of air saturation. These results highlight the exceptionally low K,
values typical for mammalian cells, reflecting their efficiency in extracting oxygen from their
environment even under hypoxic conditions.

It is also readily apparent that growth rate declines from a maximum value at approximately 0.5% DO
(0.001 mM) as oxygen concentrations are increased. This behavior reflects substrate toxicity at higher
oxygen concentrations, suggesting the need for a substrate inhibition factor to be added to the model
proposed in Equation 2.3d. However, we found that bringing the exponent inside the expression, as
shown in Equation 3.3c, gave a significantly better fit to the data due to the very sharp transition:

150"
02
] e Equation 3.3c

NF =
02 02 + K, 02" + 165022
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It is not too surprising that cells may be sensitive to high DO concentrations since they normally are
exposed to a physiological range of 2-6% in most animal tissues. For this reason, most animal cells
are cultivated at DO concentrations below 30%, which is already a hyperoxic state. Nevertheless, cells
can be exposed to much higher (and potentially toxic) oxygen concentrations if not carefully
controlled. There is clear evidence in both studies that cell death is associated with both hypoxic and
hyperoxic oxygen concentrations. Using a chemostat, Ozturk and Palsson noted significant drops in
cell viability below 5% DO (0.01 mM) and above 80% DO (0.16 mM), with similar observations made in
other studies (Ozturk and Palsson 1991; Miller, Wilke, and Blanch 1987). However, death rates were
not measured in these studies, and there was otherwise very little growth or death rate data available
in the literature, signalling a gap that will need to be addressed for CM-relevant cell lines.
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Figure 3.3e: Dissolved oxygen effects on growth rate. The trend line shown uses the modified inhibition model of
Equation 3.3c with an IC50 of 0.22 mM and an exponent (n) of 0.7. The growth half-saturation constant(K,,) is
shown in the inset because it is exceedingly low (= 0.008 uM). Data from (Miller, Wilke, and Blanch 1987).
Additional information for oxygen is available in the Supplementary Spreadsheet.
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Key takeaways and data gaps

e Monod growth rate saturation kinetic constants for oxygen (KO2) values were
found to be well below 0.01 mM. According to the function fit to the data in
Figure 3.3e, KO2 is exceedingly low (below one hundredth of a micromole),
suggesting animal cells are highly efficient at extracting oxygen from their
environment.

e Growth inhibition can occur in both hypoxic and hyperoxic states and can be
modeled using Equation 3.3c. The optimal oxygen concentration for animal cell
growth appears to be in the range of 5-20% of air saturation

e More data on oxygen’s effects on growth and death rates are needed for
CM-relevant cell lines. Data from aquatic animal cell cultures will be particularly
important, as environmental differences in oxygen concentrations and
temperature may impact oxygen kinetics in cultivated seafood.

Glucose

Taking a similar approach, we found that the reported half-saturation constants for glucose (Kg.) were
much more prevalent in the literature compared to oxygen. Although more data were available, there
was high variability in K. parameters, ranging from as low as 0.02 mM to over 5 mM (Table 3.3a).

Most mechanistic or macroscopic models cite values in the range of 0.05-0.75 mM for hybridoma and
CHO cells under batch culture conditions. The lower end of this spectrum tends to appear in studies
assuming balanced growth or fitting batch data using simplified Monod kinetics (Pértner and Schafer
1996; Sanderson et al. 1999). Conversely, studies incorporating more complex or dynamic culture
conditions—such as fed-batch or continuous systems—often adopt higher K¢ values. These values
have been derived directly from experimental fitting (Dhir et al. 2000) or selected to ensure model
alignment with observed data during simulation.

Despite this variability, several studies note that the true growth-limiting behavior in glucose-sufficient
cultures does not always correlate with measured glucose concentration. For example, Ljunggren and
Haggstrom observed that growth persisted even when glucose levels were well below published K
values, suggesting that glucose may not have been the limiting nutrient (Ljunggren and Haggstrom
1994). This discrepancy could arise from the presence of other limiting factors, such as essential
amino acids or micronutrients, which would obscure the apparent influence of glucose and inflate its
estimated Kg,. in models.
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Table 3.3a: Kinetic parameters for glucose’s effect on cell growth and death rates in animal cells. Additional
information for each study can be found in the supplementary spreadsheet.

Half-saturation Rate

Death Rate Model (First-order)

Constant
Source Cell Type Glucose Monod Death Rate at Zero |Critical Concentration:
Constant: KGlc (mM)| DO: dmax (1/day) KD (mM)
Sumbilia et al., 1981 [Human Fibroblast 0.4
Miller et al., 1988 |Murine Hydridoma 1.25
Xiachang, 1992 Murine Hydridoma 0.019 0
Frame and Hu, 1991 [Murine Hydridoma 0.034 0.101 0.0134
Murine Hydridoma 0.024 0.151 0.2404
de Tremblay et al, 1992 1
Flickinger et al., 1992 [Murine Hydridoma 0.49
Dhir et al., 2000 4.79
Jang and Barford, 2000 0.75
Acosta et al., 2007 0.13
Xing et al., 2010 0.084
Borchers et al., 2013 1.45
Lépez-Meza et al.,, |CHO - Naive 5.68
2016 CHO - recombinant 3.69
CHO - Naive 1.59
CHO - recombinant 3.69
Overall 1.57
With serum 0.82
Without serum 2.64

There are numerous considerations for interpreting the data compiled in Table 3.3a, which show no
clear correlation between the model constants determined and the conditions under which they were
measured. For example, serum content may significantly affect uptake kinetics and K. estimates, as
serum-free cultures may be lacking transport-facilitating proteins and display altered cell physiology.
The mode of cultivation is also important, as the numerical methods used to fit parameters to models
of continuous cultures may be different than for batch data, and nonlinearities may further introduce a
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bias. It has also been speculated that multiple glucose transporters with varying affinities may be
used by cells, and expression patterns may differ depending on glucose availability (Bosdriesz et al.
2015). Lastly, temperature and pH are also likely to affect both the saturation and the death rate
constants. While there is insufficient data to quantify these effects, some data in Table 3.3a seem to
suggest that the K. decreases when the temperature is dropped from 37°C to 33°C (Lépez-Meza et
al. 2016). In summary, the measurement systems, experimental conditions, and cell type differences
are all likely to play a role in driving variability.

Cell death kinetics due to glucose depletion are even less clear. Frame and Hu’s studies were the only
ones found to measure death rates as a function of glucose concentration (Frame and Hu 19913,
1991b); Figure 3.3f). This is in contrast to other reports of cells surviving in the absence of glucose.
While the relationships resemble Monod-type saturation kinetics, the growth rate curve does not
appear to come through zero. Instead, there appears to be a minimum glucose concentration required
to support any growth. The authors incorporated a threshold value in a modified Monod equation to
obtain a better fit of the data. In doing so, their half-saturation kinetic parameters are shifted and
appear to be higher than most of the others. This apparent offset is peculiar but has been observed by
others studying glucose kinetics (Lopez-Meza et al. 2016). Various hypotheses have been put forward
to explain this, such as the absence of other unidentified limiting nutrients or maintenance energy
requirements, but none offer a clear answer.
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Figure 3.3f: Effects of glucose concentration on specific growth and death rates in a murine hybridoma
non-producer cell line as a function of residual glucose concentration. Data from (Frame and Hu 1991a).
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Key takeaways and data gaps

e Monod growth rate saturation kinetic constants for glucose (KGlc) values were
found to vary over two orders of magnitude, falling between 0.02 to 5 mM. This
high variability can be explained by media components, culture conditions, and
measurement techniques, as well as cell type differences.

e More data on glucose effects on growth and death rates are needed from
CM-relevant cell lines grown in relevant bioreactor conditions and in relation to
other substrate concentrations, such as glutamine. Also, if a metabolite like
pyruvate is added to provide some of the cell’s energy needs, growth kinetics
are likely to be affected if any of the substrates become limiting.

Glutamine

K values reported for glutamine (Kg,,) also span nearly an order of magnitude, from approximately
0.03 to 0.15 mM (Table 3.3b). Most values cluster around 0.05 to 0.1 mM, especially in models
derived from batch cultures of hybridoma cells (Sanderson et al. 1999). As with glucose, some
discrepancies in the literature were observed. For example, Glacken et al. used nonlinear regression to
estimate a K, of 0.15 mM in CRL-1606 hybridomas (Glacken, Adema, and Sinskey 1988). However,
these findings were questioned by others who noted fed-batch cultures maintained robust growth
even when glutamine concentrations were well below 0.1 mM (Ljunggren and Haggstrém 1994). In
this study, it was concluded that glutamine was likely not the growth-limiting factor under their
conditions and speculated that other nutrients with higher K, such as certain essential amino acids,
may have been responsible for limiting growth.

Moreover, different cell lines and culture formats (e.g., perfusion vs. fed-batch) exhibit distinct
metabolic regulation, including differences in glutamine transporter expression and enzyme activity.
Therefore, a fixed Kg,, value is unlikely to apply across systems. Like Kg., Kg, is also influenced by
serum concentration and medium composition, although to a lesser extent due to glutamine’s central
role in nitrogen metabolism. Taken together, the most reasonable consensus value for Ky, in
mammalian cell models is approximately 0.1-0.5 mM for batch systems in the presence of serum and
probably higher in continuous systems and/or serum-free media.
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Table 3.3b: Kinetic parameters for glutamine’s effect on cell-specific growth rate in animal cells. Additional
information for each study can be found in the supplementary spreadsheet.

Half-saturation Rate
Constant

Death Rate Model (First-order)

Source Cell Type Glutamine Monod Death Rate at Zero Critical Concentration:
Constant: KGln (mM) |Concentration: dmax (1/day) KCO (mM)
Sumbilia et al., 1981 [Human Fibroblast 0.350
Miller et al., 1988  |Murine Hydridoma 0.370
Breeetal.,, 1988 [Murine Hydridom, 0.800
Glacken et al., 1988 |Murine Hydridoma 0.150
Xiachang et al., 1992 [Murine Myeloma 0.496 0.286 0.0367
Frame and Hu, 1991 [Human Fibroblast* 0.260
Jeong and Wang, 1995 Hydridoma 0.089 0.158 0.254
Dhir et al., 2000 0.032
Jang and Barford, 2000 0.075
Acosta et al., 2007 0.080
Xing et al., 2010 0.047
Nolan and Lee, 2011 |CHO 2.5
Overall 0.44
With serum 0.25
Without serum 2.50

(*) Estimated by Frame and Hu based on the data from Sumbilla et al., 1981

Figure 3.3g shows an example of death kinetics as a function of ultra-low glutamine concentrations
(Jeong and Wang 1995). In the study, the authors explained that although glutamine and glucose are
partially substitutable as an energy substrate, they also have other functions independently and thus
are still required to support cell growth and even survival. We fit the data to two models: a linear
model like Equation 2.2e and an inverse saturation model like Equation 2.3d. Both offer a reasonable
fit of the data. Both are two-parameter models, therefore, the curvilinear model is recommended
since it is a continuous, non-zero function.
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Figure 3.3g: Death kinetics due to glutamine depletion overlaid on growth kinetics in murine hybridoma cells.
Data from (Jeong and Wang 1995). Two models are fit to the death kinetics: a simple linear function and an
inverse Monod. Both intersect the y-axis at d,,,, of 0.158 day™ and the latter model has a death rate constant of
0.254 mM.

The death rate data in Figure 3.3g is overlaid on the growth kinetics, also as a function of glutamine
concentration. It is apparent that there is a significant overlap of cell death and substrate limitation.
Thus, it appears some cell death is unavoidable if glutamine is also a limiting nutrient in culture. From
the overlay, one would need to maintain glutamine concentrations above 0.5 mM to avoid appreciable
death rates. However, over most of this range, the specific growth rate is considerably higher than the
death rate. Only at very low concentrations of approximately 0.004 mM is the death rate greater than
the growth rate

This observation in batch culture is substantiated by the studies conducted by Miller et al. and
Boraston et al., where a (continuous) chemostat was used to study the effect of growth rate and
substrate concentration on various metabolic quotients (Boraston et al. 1983; Miller, Blanch, and
Wilke 2000). Both studies observed that the true cell-specific growth rate was not always equal to the
dilution rate for all dilution rates tested, contrary to what theory would predict at steady state.
Instead, a declining viability was observed at low dilution rates. Since glutamine was depleted first in
these continuous cultures, it is assumed that this substrate was limiting growth. At the lower residual
glutamine concentrations, elevated death rates were apparent. In response, the chemostat preserved
a steady state by increasing the true growth rate to compensate for the dying cells.

Sﬁ



Key takeaways and data gaps

e Monod growth rate saturation kinetic constants for glutamine (KGIn) values are
more consistent in the literature compared to glucose. A reasonable consensus
for KGln values lies between 0.1-0.5 mM for batch systems with serum and
probably higher in continuous systems and/or in serum-free media.

e Two-parameter models can be used to fit death rate kinetics for glutamine.
Both a linear relationship and an inverse Monod (Equation 2.3l) provide a
reasonable fit for initial modeling purposes.

e However, such kinetic parameters need to be measured for CM-relevant cell
lines and in conjunction with the availability of other amino acids and possibly
other intermediate metabolites if added to the medium (e.g.,
alpha-ketoglutarate).

Summary: Effects of substrate concentrations on cell growth and death rates

In summary, empirical models based on Monod-type kinetics effectively capture how substrate
concentrations influence specific growth and death rates. However, the model parameters measured
over the past 30 years are highly variable. Many studies used murine hybridoma cell lines, and the
half-saturation kinetic constants also varied among these studies, suggesting the conditions under
which these parameters are determined are important to consider when interpreting results. For
future studies, it will be important to understand how best to measure these parameters such that
they are representative of the final process. For example, it appears that serum may allow faster
growth at low substrate concentrations (i.e., lower K,). Thus, these measurements need to be made in
representative (likely serum-free) conditions for commercially relevant processes. Similarly,
continuous processes may have different substrate affinities because they have the opportunity to
adapt to low substrate conditions. Ideally, cellular energetics should also be captured in such studies
to understand whether any transient effects are at work and if substrate uptake and assimilation are
best separated in a structured model.

The average K, values of approximately 0.001 mM (1 uM) for oxygen, 2 mM for glucose, and 0.5 mM
for glutamine should provide a good starting point for model construction and even testing some of the
concepts discussed in this paper. These values are not as critical for simple models under non-limiting
substrate conditions but become important in understanding system dynamics in ranges where
metabolic shifts may occur, which are discussed further in Section 3.5. Lastly, the maximum specific
growth rate for a given cell type or line is also a function of temperature and pH, yet little data exist on
how these parameters affect the kinetics of growth, death, and thresholds for substrate limitations.
Understanding these effects could reveal opportunities to improve bioreactor performance and
process control.
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3.4 Kinetics of metabolite-induced growth inhibition and cytotoxic
death

As animal cells consume nutrients, they also produce metabolic by-products such as lactate,
ammonium, and CO, that can inhibit growth and productivity as they accumulate. At high enough
concentrations, they can also contribute to cell death. Additionally, these by-products also influence
osmolality, which can itself affect growth rates. Some previous TEMs have set absolute thresholds for
metabolite inhibition. However, using a binary limit that assumes there can be no growth above this
value is an oversimplification of the kinetics of metabolite-induced cell growth inhibition. In this
section, we summarize data on metabolite inhibition and cell death kinetics (where available) with a
focus on using mathematical expressions to estimate the reduction in growth rates as a function of
inhibitor concentration, which can be used to inform more dynamic and representative TEMs.

Inhibition effects of lactate

Lactate is the main by-product of aerobic glycolysis in most animal cell cultures. As lactate
accumulates in the extracellular environment, it acidifies the medium, which is typically countered
with base addition to control pH, which then increases the culture’s osmolality. All of these
phenomena, which can negatively impact growth and viability, were once attributed to lactate itself.
However, when separated from these other effects, the lactate ion is generally less inhibitory than
previously believed. From the modeling perspective, the effects of lactate, pH, and osmolality should
be handled separately.

Accordingly, the mechanism of lactate toxicity is thought to be driven by intracellular acidification,
disruption of ion gradients, osmotic stress, and calcium chelation, which can inhibit glutaminase
activity and reduce ammonium production (Glacken, Fleischaker, and Sinskey 1986). Humbird used an
absolute threshold for lactate where growth was fully inhibited at >50 mM, but this is an
oversimplification (Humbird 2021). We compiled several studies that reported the specific growth rate
of animal cells as a function of extracellular lactate concentration and visualized the results as
normalized growth rates relative to control cultures without added lactate (Table 3.4a, Figure 3.4a).
As shown in the figure, most of the dose-response curves could be fit to the one- or two-parameter
models previously presented in Figure 2.3b. For example, the two-parameter model (Equation 2.3k)
applied to CHO cells was fit to the data from Lao and Toth using an IC100 of 96 mM and an exponent
of 0.40 (Lao and Toth 1997).

The data collectively show considerable variability across different cell types. Growth inhibition
typically emerges at concentrations above 20 to 30 mM, with an approximate IC50 range between 10
to 80 mM depending on the cell line and culture conditions. Therefore, growth inhibition for lactate is
not a binary function (i.e., growth or no growth) surrounding a single concentration as assumed in prior
TEMs. Instead, growth inhibition is a progressive event that can be represented using either anIC50
(as in Equation 2.3i) or an IC100 (as in Equation 2.3k) with an exponent, if desired, to control the
curve’s steepness.
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Table 3.4a. Summary table of lactate inhibition across animal cell lines. The full dataset, including culture
conditions, mode of growth, and death kinetics data, can be viewed in the Supplementary Spreadsheet.

Reference Cell type IC50 (mM) 1C100 (mM)
Bree, 1988 Murine hybridoma (DuPont) 8
Glacken, 1987 Murine hybridoma 40
Hassell, 1990 Murine hybridoma (PQXB1/2) 22
Ozturk, 1992 Murine hybridoma (167.4G5.3) 70 80
Lao, 1997 CHO 87 96
Cruz, 2000 BHK 43.5 (stirred), 76 (stirred),

70 (stationary) 120 (stationary)

Silvac, 2010 Channel catfish ovary 10 40
Gupta, 2017 Murine ESC 26.5 54
Haraguchi, 2024 |Murine myoblast (C2C12) 22 44
Average 39.9 72.9

The variability in the data can be partially explained by differences in conditions between studies, from
cell lines, culture modes, adaptation states, and media composition (e.g., use of serum). In our review
of the literature, we observed that primary cells tend to be more sensitive to lactate than immortalized
or transformed cell lines. While stationary cultures often exhibited greater sensitivity than stirred
suspension systems, some have observed the opposite trend for BHK cells, with an IC50 of 44 mM in
stirred cultures and 70 mM in stationary conditions (Cruz et al. 2000). Even among hybridoma lines,
there is significant variability. For instance, Glacken et al. found little inhibition below 40 mM, whereas
Bree et al. reported an IC50 as low as 8 mM in a different hybridoma line (Bree et al. 1988; Glacken,
Fleischaker, and Sinskey 1986).

Many studies also used serum-containing media, which may offer some protection against lactate
inhibition. Some groups corrected for osmolality by using sodium lactate controls that revealed that
true lactate toxicity was often less severe than initially thought. Others found that the gradual
accumulation of lactate during culture was better tolerated than sudden additions. Adaptive
responses to lactate have also been documented, especially in CHO cells. Some engineered or
adapted lines show reduced lactate production and, in some cases, net lactate consumption in
late-stage cultures. This shift, often induced by glucose limitation or galactose supplementation, can
increase energy efficiency and product yields. These data point to the many variables that should be
taken into consideration when interpreting lactate inhibition and when making assumptions in TEMs.
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Figure 3.4a: Inhibitory effect of lactate on the growth rate of various animal cells relative to a control culture. The trend line
shown was fit to the data from Lao et al. using the two parameter model of Equation 2.3k and adjusting the IC100 to 96 mM
and the exponent to 0.4 (Lao and Toth 1997).

In the context of CM, C2C12 murine myoblasts were more sensitive to lactate than CHO or hybridoma
cells, showing measurable cytotoxicity at concentrations as low as 20 mM (Chu et al. 2024). In this
study, the authors used a co-culture system with lactate-consuming cyanobacteria, showing C2C12
proliferation increased by threefold when lactate concentrations were reduced by 38% ((Chu et al.
2024)). Another study using chicken fibroblasts held lactate below 30 mM to limit inhibition during a
continuous process (Laura Pasitka et al. 2024). However, other complete dose-response data for
lactate on CM-relevant cell lines were not identified.

Gupta et al. studied the impact of lactate on the pluripotency of mouse pluripotent stem cells (Gupta
et al. 2017). No significant effect was found, discrediting earlier studies. However, when the pH was
allowed to change, pluripotency was indeed affected, suggesting prior studies did not control for pH.
Such phenomena are clearly of interest to CM applications if pluripotent cells are to be used in a
subsequent differentiation process.

Lastly, unlike growth inhibition, cell death processes are irreversible. Data describing lactate-induced
cell death (i.e., cytotoxicity) are more limited. Xing et al. reported a drop in CHO cell viability when
lactate concentrations exceeded 58 mM (Xing et al. 2008). While lactate generally does not trigger
apoptosis, very high concentrations can lead to necrosis by overwhelming cellular pH regulation and
osmolarity tolerance. For example, necrosis and cytoplasmic leakage were observed in BHK cells
exposed to lactate levels greater than 30 mM (Cruz et al. 2000).

Sﬁ



Taken together, our literature review showed that lactate inhibition depends on multiple factors,
including the cell line, culture mode, adaptation state, and medium composition (e.g., use of serum).
Experimental data tended to fit the kinetics of a two-parameter model for substrate inhibition,
allowing for the derivation of IC50 and IC100 values. When more experimental data on the growth
inhibition of lactate on CM-relevant cell lines becomes available, these models can be incorporated
into future TEMs.

Key takeaways and data gaps

e A two-parameter model is best used to describe lactate inhibition on cell
growth, with IC50 values varying between 10-80 mM. On average, for the cell
lines where data were reported, the IC50 and IC100 are approximately 40 mM
and 73 mM, respectively.

e Taking only the three studies that corrected for osmolality, these averages for
IC50 and IC100 move up to 67 and 84 mM, respectively, suggesting that
sensitivity to lactate is overestimated in many studies.

e More dose-response data are needed on lactate inhibition and cytotoxicity
under serum-free conditions, especially for cell lines relevant to CM production.

e Future growth inhibition studies should compare gradual accumulation of
lactate with acute lactate addition.

e Exploring metabolic engineering and cell feeding strategies to promote lactate
consumption could improve culture performance and cell yields.

Inhibition effects of ammonia

Ammonia is produced from glutamine catabolism and non-enzymatic glutamine degradation, making
its accumulation difficult to avoid in cultures that rely on glutamine as a principal nitrogen source.
Ammonia is a potent metabolic inhibitor that impairs growth and viability in nearly all animal cells, as it
interferes with intracellular pH regulation, membrane potential, glycosylation pathways, and
lysosomal function. At physiological pH (~7.4), about 99% of ammonia exists as ammonium (NHa"),
with only 1% as membrane-permeable ammonia gas (NHs). After entering the cell, NHs re-forms NHa’,
causing a brief alkalinization followed by acidification that disrupts cell function and can lead to
growth arrest or death (Ozturk, Riley, and Palsson 1992). Ammonia can also trigger apoptosis by
disrupting glycoprotein synthesis and lysosomal function (Cruz et al. 2000; Ozturk, Riley, and Palsson
1992; Glacken, Adema, and Sinskey 1988).

Humbird previously used an absolute threshold for ammonia where growth was fully inhibited at >5
mM (Humbird 2021)). Our review of the literature confirmed that ammonia is substantially more toxic
than lactate, with inhibitory effects commonly observed at concentrations of 2 to 4 mM (Table 3.4b).
We summarized datasets where ammonia-induced growth inhibition was characterized for at least
three concentrations, with most cell lines showing IC50 values between 3 to 8 mM ammonium (Figure
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3.4b). Similar to lactate inhibition, the dose-response curves generally fit the three-parameter model,
although some sensitive cell lines displayed a linear decline in growth beyond 2 mM.

Table 3.4b. Summary table of ammonia inhibition across animal cell lines. The full dataset, including culture
conditions, mode of growth, and death kinetics data, can be viewed in the Supplementary Spreadsheet.

Reference Cell type IC50 (mM) I1C100 (mM)
Cain, 1986 Murine Fibroblast 7.2 12.4
Miller, 1988 Murine Hybridoma AB2-143.2 5
Bree, 1988 Murine Hybridoma (Dupont) 1.05
Glacken et al., 1988 Murine Hybridoma CRL-1606 5.1
McQueen and Bailey, 1991  [Murine Hybridoma 8.35
Murine Hybridoma 7.3
Murine Hybridoma 5.2
Hassell, 1991 Hamster (Baby) Kidney (BHK) 1.3
Human Fibroblasts (Hela) 0.8
Murine Fibroblast (McCoy) 1.7
Canine Kidney (MDCK) 1.8
Murine Hybridoma PQXB1/2 5.1
Ozturk et al., 1992 Murine Hybridoma 167.4G5.3 4.25 4.8
Newland et al., 1994 Murine Hybridoma SP2/0-Ag-14 3.4 7
Murine Hybridoma SP2/0-Ag-14 4.1 8
Cruz et al., 2000 Hamster (Baby) Kidney (BHK) 4 10
Slivac, 2010 Channel Catfish Ovary 3.65 6.7
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Figure 3.4b: Dose-response curves for growth inhibition of ammonia across various animal cell lines. The trend line shown
was fit to the data from Ozturk (1992) using a three-parameter model. The model is a modification of Equation 2.3k including
another exponent (n) applied to I and IC100. The fit was accomplished with IC100 = 4.5 mM, Phi= 0.4, and n = 2.

There are several observations that can be made from the data. Most of the early studies were
conducted on murine hybridomas, meaning the available data may not represent the effects of
ammonia on a broader range of species and cell types, such as those used for CM. Cell type specificity
has been observed, as BHK and MDCK cells show IC50 values near 1 to 2 mM, while mouse ascites
tumor cells reportedly tolerate up to 40 mM NHa* without inhibition ((Cruz et al. 2000; Ozturk, Riley,
and Palsson 1992; Glacken, Adema, and Sinskey 1988). Additionally, most inhibition studies used
bolus ammonium chloride addition, which may exaggerate toxicity compared to real-world cultures
where ammonia accumulates gradually, permitting cellular adaptation ((Newland et al. 1994;
McQueen and Bailey 1990). As observed with lactate, primary cells may be more sensitive than
transformed cell lines, and cells grown in stirred suspension generally exhibit less sensitivity
compared to stationary cultures ((Cruz et al. 2000; Ozturk, Riley, and Palsson 1992; Glacken, Adema,
and Sinskey 1988). Most studies were conducted in serum-containing media, although limited
comparisons suggest that serum concentration may not strongly influence ammonia sensitivity. In
general, while it is likely that serum offers some protection against ammonium toxicity, more studies
are needed under serum-free conditions for CM-relevant cell types.
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It is also important to consider pH when interpreting ammonia inhibition. Analysis of the data shows a
marked shift in IC50 values as a function of extracellular pH, suggesting ammonia toxicity is strongly
pH-dependent (Figure 3.4c). Notably, the curve of the relationship matches the general profile of pH
on specific growth rate (Figure 3.3c), suggesting a shared underlying inhibition mechanism related to
intracellular acidification and disruption of pH homeostasis.

As with lactate, there are fewer studies describing ammonia-induced cell death, although some have
noted these mechanisms can trigger apoptosis (Cruz et al. 2000). Overall, the limited data indicate
that specific death rates remain relatively stable with increasing ammonia concentration, which
suggests that ammonia primarily reduces growth rate and cell yield rather than causing acute cell
death (Newland et al. 1994; McQueen and Bailey 1990).

We were unable to identify sufficient dose-response data to characterize ammonia inhibition effects
on CM-relevant cells, although one study using chicken fibroblasts held ammonia below 3 mM to limit
inhibition during a continuous process (Laura Pasitka et al. 2024). Because the inhibition effects of
ammonia are known to be problematic, most of the research to date has focused on methods to
minimize its effects, such as non-ammoniagenic feedstocks (Hubalek et al. 2023) and media recycling
strategies that remove ammonia (Yang et al. 2025) or remediate ammonia-containing spent media
using microalgae (Thyden et al. 2024).
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O =~ N W A OO ~N 0 ©
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Figure 3.4c: Effect of extracellular pH on the IC50 for ammonia chloride added to a cell culture. Data from
((McQueen and Bailey 1990)).
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Key takeaways and data gaps

e Atwo-parameter model for substrate inhibition can sometimes be used to describe
ammonia inhibition on cell growth, with IC50 values between 3-8 mM.

e More dose-response data are needed on ammonia inhibition and cytotoxicity under
serum-free conditions, especially for cell lines relevant to cultivated meat production.

e Future studies should pay special attention to pH when interpreting results.

e Future studies should examine gradual adaptation to ammonia as well as continued
methods to remove or limit ammonia production.

Effects of osmolality

As lactic acid accumulates during cell growth, it becomes a major contributor to increasing osmolality,
especially when base addition is used to control pH. Therefore, some negative effects previously
attributed to lactate may be associated with increased osmolality. To determine this, studies were
performed using spiked sodium lactate with osmolality-matched controls, finding that the lactate
sharply inhibited cell growth in CHO cells (Gagnon et al. 2011). Similarly, Cruz et al. observed that
while osmolality accounted for part of the growth inhibition at low to moderate lactate concentrations,
lactate-specific effects dominated at higher concentrations (Cruz et al. 2000). Overall, osmotic stress
had a measurable but secondary role, while lactate acted as a direct metabolic inhibitor.

With this in mind, it is important for models to account for osmolality as an independent inhibition
factor, as described in Equation 2.3h. In CM processes, high osmolality can be a result of the initial
medium formulation and whether concentrated nutrients are added, especially during fed-batch
processes. In essence, controlling for the inhibition effects of osmolality requires balancing sufficient
nutrient concentration for cell growth with the risk of osmotic stress (O’Toole, n.d.).

Across studies on CHO and other mammalian cells, the optimal osmolality range for growth and
productivity generally falls between 280 and 320 mOsm/kg, close to serum osmolality (~290
mOsm/kg) (O’Toole, n.d.). Growth typically declines when osmolality drops below ~260 mOsm/kg or
exceeds ~380 to 450 mOsm/kg, depending on the cell line and culture system (Alhuthali, Kotidis, and
Kontoravdi 2021; Xing et al. 2008). Similar to lactate and ammonia, adherent cells tend to tolerate
narrower osmotic ranges compared to suspension-adapted cells (Alhuthali, Kotidis, and Kontoravdi
2021).

In our literature review, we summarized osmolality vs. growth rate data in controlled experiments
from CHO and hybridoma cultures (Figure 3.4d). Across studies, the growth rate decreased linearly
with increasing osmolality above the optimal range, with some cell type specificity observed for the
slope of growth inhibition. Based on the data, the estimated IC50 for osmolality was approximately
465 mOsm/kg. In CHO suspension cultures, a critical threshold around 450 mOsm/kg has been
observed, while osmolality below 320 mOsm/kg can also reduce specific growth rates due to limited
nutrient availability (Alhuthali, Kotidis, and Kontoravdi 2021).
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Figure 3.4d: Effect of osmolality on growth rate in CHO and Hybridoma cells.

In the context ofCM, maintaining culture osmolality within the optimal range will be critical for
achieving high-density cell growth. Muscle, fat, pluripotent, or fibroblast cells may differ from CHO
cells in osmolality tolerance, and additional work is needed to define safe operating windows. Given
that both hypo-osmotic and hyper-osmotic stress can impair culture performance, nutrient feeding
strategies and by-product control should be carefully designed (Alhuthali, Kotidis, and Kontoravdi
2021).

Key takeaways and data gaps

e The osmolality effect on growth rate was linear, with inhibition observed as
osmolality increased.

e AnIC50 of 465 mOsm/kg was estimated across studies.

e More data are needed to determine osmolality tolerance across cell types and
species for CM production. These studies should distinguish between osmotic
stress and metabolite-specific toxicity, especially as it relates to lactate.

e Understanding the effects of gradual osmolality shifts vs. sudden changes can
inform optimal feeding strategies that limit growth inhibition.

Effects of dissolved carbon dioxide

Dissolved CO2 (dCO2) plays an important role in cell culture as a part of the bicarbonate buffering
system that maintains pH (CO2z + H20 = H2COs = H" + HCOs"). However, accumulation of dCO: due to
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cellular respiration or limited gas exchange in bioreactors can inhibit growth and impact metabolic
pathways. The inhibitory effects are believed to result primarily from intracellular acidification, as CO2
freely crosses the cell membrane, reacts with water, and dissociates into hydrogen and bicarbonate
ions.

Understanding the point at which dCO2 becomes inhibitory has been challenging for several reasons.
First, standard CO2 sensors measure partial pressure (pCO2, in mmHg), while cells respond to the
molecular concentration of dCO2 (in mM). Converting pCO2 to dCO: requires the use of Henry’s Law and
depends on variables such as temperature, pH, and salinity. As a result, two cultures at the same pCO:2
may have different dCO2 concentrations. This complexity is further compounded in bioreactors by
large-scale effects like imperfect mixing and hydrostatic pressure. Second, controlling for interaction
effects such as osmolality is difficult. Even at constant pH, an increase in pCO:2 can lead to an increase
in osmolality, and osmolality alone can impair growth. As such, it is difficult to distinguish direct CO:
toxicity from secondary osmotic stress.

Across several studies, inhibitory effects of dCO2 in CHO and hybridoma cells were observed at
concentrations between ~1.0 and 8 mM, with an estimated IC50 of 6.3 mM (Figure 3.4e; (Gray et al.
1996; Dezengotita, Kimura, and Miller 1998; Zhu et al. 2005). Humbird previously set a threshold of
75 mmHg (~2.34 mM) for inhibition, although some studies reported high viability even above this
point (Zhu et al. 2005). Zhu et al. highlighted the importance of independently controlling CO2 and
osmolality (Zhu et al. 2005). In their study, when osmolality was held constant at 350 mOsm/kg, an
increase in dCOz2 from 1.88 to 4.7 mM caused a 9% drop in viability. When osmolality rose to 425
mOsm/kg alongside increased dCO., viability dropped by 24%. These findings, supported by others
(Brunner et al. 2017), suggest that dCO2 and osmolality have synergistic impacts on cell growth. While
some results emphasize the role of osmolality, others point to intracellular pH as a more critical factor.

In the context of CM, managing dCO2 accumulation will be important for maintaining growth and
productivity, especially at high cell densities. There is a precedent of using inert gas (e.g., nitrogen)
stripping in the biopharmaceutical industry to remove excess CO, (Pattison et al. 2000). More data are
needed to establish tolerance thresholds in CM cell lines, and future experiments should control pH
and osmolality independently to identify the primary drivers of inhibition.

Sﬂ



100% . ® Mouse Hybridoma (deZengotita, 1998)

A CHO (Zhu etal., 2005)

1-([dCO2]"n/IC100"n)

80%

60%

40%

Relative growth rate (p/pmax)

20%

Limitimposed by Humbird (2020)
75 mmHg pCO2 @ 37 degC, 1 atm total pressure)

0%
0 1 2 3 4 5 6 7 8 9 10

Dissolved carbhon dioxide concentration (mM)

Figure 3.4e: Effect of dissolved CO, concentration on cell growth rate (relative to maximum specific growth rate for the given
cell line) (Dezengotita, Kimura, and Miller 1998; Zhu et al. 2005). The red line represents the Humbird threshold. The trend
line was fit to the combined data using a modified two-parameter model (IC100 = 8.6 mM dCO,, and exponent n = 2.3).

Key takeaways and data gaps
e AnIC50 of 6.3 mM was estimated for dCO2, however, more studies are needed
to define dCO: tolerance levels in CM-relevant cell lines.
e Researchers should control for pCO2, pH, and osmolality independently to
distinguish their effects, as exemplified in (Zhu et al. 2005)
e Larger-scale bioreactor studies are needed to assess the combined impacts of
dCO:2 and osmolality on culture performance.

Summary of metabolite inhibition

Across the studies analyzed, metabolite IC50s ranged from ~3-8 mM for ammonia, ~10-80 mM for
lactate, ~6.3 mM for dissolved CO, and ~465 mOsm/kg for osmolality. The variance in data for some
metabolites can be explained by differences in the cell line (i.e., cell type-specificity, primary vs.
transformed cells), culture conditions (e.g., suspension vs. adherent), and medium composition (e.g.,
presence or absence of serum). While inhibition could be modeled mathematically, curves fitted to
acute exposure data may overestimate effects in real-world cultures where metabolites accumulate
gradually, as some cells have demonstrated the ability to adapt to higher metabolite concentrations.
Strategies to reduce metabolite buildup, optimize nutrient feeding, and limit osmotic shifts are critical
for improving growth and viability in CM processes. The priorities for future research include acquiring
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more data on metabolite inhibition on cell growth and pluripotency for processes requiring
differentiation in CM-relevant cell lines, performing studies with gradual metabolite accumulation
instead of bolus addition, and designing studies to disentangle the interactive effects between
metabolites under different culture conditions.

3.5 Stoichiometry of cell growth, substrate consumption, and
metabolite production

While the previous section focused on the factors directly affecting the rate of cell growth and death,
this section delves into how much of each primary substrate (oxygen, glucose, and glutamine) is
consumed and how much of the key waste metabolites (lactate, CO,, and ammonium) are produced.
Although the consumption and production rates of these metabolites are generally proportional to the
growth rate of the cell, their relative amounts can vary due to a number of factors. These amounts,
driven by culture conditions and substrate and metabolite concentrations, have significant bearing on
process performance. The efficient use of substrates will reduce media costs, while minimizing the
accumulation of inhibiting waste products will increase bioreactor productivity and cell viability.

All TEMs published to date assume a static stoichiometry for overall growth, implying that substrate
consumption is proportional to biomass produced. This simplification is equivalent to using apparent
yields (discussed in Section 2.4), which implicitly include the maintenance requirements of the cells.
In other words, the yield factors are constant regardless of growth rate or substrate concentrations
present in the extracellular medium. As a result, these models treat growth rate as the sole
determinant of substrate use and by-product formation, regardless of the overall conditions. We were
interested in evaluating whether this simplifying assumption is justified when modeling bioreactor
performance and the overall use of the major carbon and energy substrates.

Methodology for estimating yield factors

To calculate the yield factors for oxygen, glucose, and glutamine, we compiled available consumption
data for these substrates under various growth conditions to build a more quantitative understanding
of metabolic requirements. In some studies, the specific consumption rates were calculated from cell
culture data and reported in graphs or tables. In others, they were estimated from time-series data on
substrate and biomass concentrations. For the latter, if a growth profile was provided with the
associated metabolite concentrations, specific consumption rates could be calculated.

For a batch culture, Equation 3.5a defines the instantaneous specific consumption rate of a substrate
(gs) as the rate of its disappearance (dS) divided by the cell concentration (X). Using time interval data,
this derivative can be approximated by the difference between the substrate concentrations at the two
time points divided by the time increment and the average cell concentration over the time interval:

_1.ds _ AS
q X dt X At

Equation 3.5a

This approximation is reasonable as long as there is not a very large difference in cell concentration,
such as during exponential growth. Very small time increments with only small changes in substrate
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concentrations are also prone to error due to inaccuracies in concentration measurements. For
fed-batch cultures, this calculation is somewhat more complicated as any substrate additions over the
time interval must be accounted for when estimating rates.

For continuous cultures, specific consumption rates can readily be calculated using Equation 3.5b
when a steady state has been established:

(Sfeed_ S) D
qS = P Equation 3.5b

The latter method using a chemostat and Equation 3.5b to determine these specific rates is generally
more accurate since the conditions are time-invariant and precise sampling time is not critical.

Where true yield coefficients and cell maintenance requirements were not explicitly reported, they
were estimated by fitting Equation 2.4a to the various specific consumption rates as a function of
growth rate at the time of the sampling. Apparent yield data were also collected where available.

To compare data between cell lines, we normalized all consumption data on a dry cell weight basis.
The rationale for this is that water content and cell size could otherwise skew results (see Section 3.2).
The presumption here is that a cell that is twice as large (in volume) with twice as much dry mass
would probably consume twice as much substrate under the same conditions. We standardized units
for specific consumption rates as mmol substrate consumed per gram of dry cell weight per day
(mmol/gDCW/day). Substrate concentrations were kept in molar terms so that molecular flux rates
could be directly compared as molar ratios. For reporting yield coefficients and maintenance terms,
we used mass-based units (gDCW/g Substrate), which are easier to interpret. The inverse of the
apparent yield coefficient is then equivalent to a feed conversion ratio (FCR):

FCR=1/Y

We also noted time delays in cell responses to changing nutrient or environmental conditions, as this
information will be needed for modeling dynamic bioreactor behavior.

There is a wealth of data available for cell lines that have been used for biopharmaceutical production.
For these lines, maximum achievable cell concentrations were historically of interest, but the
productivity of secreted recombinant proteins was the primary thrust. We assessed if the available
data regarding the control of metabolism toward cell growth were relevant for emerging CM-relevant
cell lines. In the subsections that follow, we present data and analysis on each major
substrate-metabolite pair to identify trends, differences, and model-relevant insights. While discussed
individually, their mechanisms of metabolic control are often highly interconnected, and the final
subsection synthesizes these interactions to provide a more holistic interpretation.

Stoichiometry of oxygen metabolism

Studies conducted by Miller et al. and Ozturk and Palsson offer the most comprehensive analysis of
oxygen’s influence on the relative consumption of energy substrates (Miller, Wilke, and Blanch 1987,
1988; Ozturk and Palsson 1990). As a key substrate for respiration in aerobic organisms, oxygen is
essential for the complete oxidation of carbon substrates into carbon dioxide and water. At a fixed
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growth rate, oxygen consumption depends on its availability. If the dissolved oxygen (DO)
concentration decreases, both glucose consumption and lactate production increase, indicating a
metabolic shift from oxidative phosphorylation to glycolysis. The yield of lactate from glucose (Y’ .¢/ai0)
also increases, reflecting enhanced glycolytic flux.

Figure 3.5a highlights this phenomenon using data from a continuous culture where the growth rate
was constant while the oxygen concentration was varied widely.* As can be seen, when the oxygen
concentration falls below a critical point (to the left of the red line), oxidative phosphorylation can no
longer be supported. In response, the cells resort to increasing glycolysis and glutaminolysis to
generate the requisite energy needs. This metabolic switch occurred below DO concentrations
corresponding to 1% of air saturation at atmospheric pressure (<0.002 mM in the liquid phase), and
accelerated as DO decreased further to 0.1%.
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Figure 3.5a: Effect of DO concentration on the uptake of oxygen, glucose, and glutamine in a mouse hybridoma
cell line. The x-axis is shown with a logarithmic scale to emphasize the relationships at very low DO
concentrations. Data from (Miller, Wilke, and Blanch 1987, 1988; Ozturk and Palsson 1990).

Ozturk and Palsson found a similar threshold at 1.2% of air saturation, resulting in increases in the
specific uptake rates of both glucose and glutamine from their respective minima. Interestingly, they
also observed that very high DO concentrations (above 10%) led to the same effect, likely driven by

“ Recall Equation 2.2c, where growth rate in a continuous culture can be held constant by keeping the dilution
rate constant.
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more complete oxidation and higher overall metabolic activity, both of which demand increased
substrate flux (Ozturk and Palsson 1990).

Part of the reason for the dramatic rise in glucose consumption at low DO is because it cannot be fully
oxidized in the absence of oxygen. Because glycolysis yields only 2 ATP per mole of glucose
consumed, more substrate is needed to fulfill energy demands and more lactic acid is produced.
Concomitantly, glutamine consumption and ammonia production also rise at lower DO levels, though
less dramatically, suggesting adjustments in amino acid metabolism.

Presumably, with a further reduction in DO, cell death would ensue; however, this appears to be highly
cell-line dependent. For example, the murine hybridoma cell line studied by Ozturk and Palsson
maintained viability for a prolonged period at zero DO (Ozturk and Palsson 1990). This would suggest
that glycolysis and/or glutaminolysis can continue to be catabolized for energy if either substrate is
readily available. The continuation of catabolism in the absence of oxygen also has important
implications for end-product quality, with initial experiments demonstrating that post-harvest changes
resemble postmortem changes in conventional meat production (Mehmood et al. 2025).

Oxygen consumption and growth rate

Oxygen uptake is typically proportional to growth rate, except when below threshold DO
concentrations, such as those shown above. However, the bioprocess literature rarely correlates
oxygen uptake rate (OUR) with growth rate, presumably due to the relative difficulty in measuring
oxygen consumption rates in culture. Much of the original foundational literature used a traditional
Clark-type dissolved oxygen electrode to measure oxygen consumption. Newer methods are now
available (discussed later in Section 5) but are focused largely on cancer biology. Figure 3.5b compiles
the limited data available in an attempt to establish a yield coefficient and typical maintenance
requirement for this essential nutrient.

The bioreactor-derived data in Figure 3.5b were taken from chemostat experiments at a constant
dilution rate, measuring specific OUR (qg,). While actual growth rates can be extracted from cell
viability data at each steady-state sample point, the true growth rates still spanned a narrow range.
This limited range of growth rates did not allow a robust slope and intercept to be determined. To
augment this data set, we used data from Wagner et al., who studied a wide variety of malignant cell
types (Wagner, Venkataraman, and Buettner 2011). For the six cell lines they studied, the average
specific OUR ranged from 5.8 to 14 mmol/gDCW/day for experiments where the cells were growing
exponentially and not artificially stimulated. Neither total cell mass nor exact specific growth rates
were reported, but gq,, was normalized to cell protein. So, protein was assumed to be 50% of cell dry
mass to convert to a cell mass basis. The single point on the graph is the average (9.5
mmol/gDCW/day) and the error bars are the standard deviation across eight measurements at an
assumed growth rate corresponding to just under a 24-hour doubling time.

We also indicate the values for oxygen uptake assumed by prior TEMs in Figure 3.5b (Negulescu et al.
2023; Humbird 2021). Humbird differentiated between wild-type and metabolically enhanced cells,
the latter consuming more oxygen to model the effects of less lactate and ammonia accumulation.
Nonetheless, all the values fell within a similar range and are roughly in line with the data analyzed
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from Miller et al. and Ozturk and Palsson, except for the lower values, which likely reflect outliers due
to oxygen-limited conditions. The average from Wagner et al. also agrees well with the gy, assumed by
Humbird and Negulescu et al. for wild-type cells. These agreements all support the use of specific
metabolic rates normalized to dry cell mass, as Wagner et al. also observed a loose correlation
between OUR and cell size and protein content.
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Figure 3.5b: Specific oxygen consumption rate as a function of cell-specific growth rate data that could readily
be found. The data from Wagner was aggregated into a single average (n=8) at an assumed growth rate, and the
y-intercept of the trend line was approximated from the reduction in qg, when four of the cell lines studied
reached the stationary phase. Starred data points indicate values assumed by published TEMs. Data from
((Wagner, Venkataraman, and Buettner 2011)) and mouse hybridoma cells (Miller, Wilke, and Blanch 1987;
Ozturk and Palsson 1990).

For four cell lines, Wagner et al. measured q,, when the cells reached stationary phase (i.e., zero
growth rate). From these measurements, the oxygen uptakes as a fraction of the values measured
during exponential growth ranged from 12 to 67%. An average of 31% was applied to the average
growth-associated average to approximate a typical maintenance requirement, as shown by the
y-intercept in Figure 3.5b. Using the slope of the trend line, an approximate true biomass yield on
oxygen can be estimated at 2.9 gDCW/g O,. Lastly, an interesting observation by Wagner et al. was that
cells in a lag phase had a dramatically (~9-fold) higher qo, than even that measured in exponential
growth, reflecting important transients that are at play.
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Overall, the lack of data for oxygen consumption under various rates of growth indicates a gap for
CM-relevant cell lines under bioreactor conditions and oxygen-related growth phenomena need to be
understood for scaling up these aerobic processes.

Key takeaways and data gaps

e Very low DO levels, below ~0.5% air saturation (<0.001 mM), represent a
metabolic transition zone where cells switch from oxidative phosphorylation to
glycolysis, resulting in significant increases in specific glucose and glutamine
uptake rates and subsequent lactate and ammonia formation. This low
threshold indicates the efficiency at which aerobic organisms can sequester
oxygen, but DO should be kept well above this threshold.

e However, very high DO levels are also not optimal, apparently due to the toxicity
of oxygen. The optimal range of DO lies between 1 and 10% air saturation.

e Limited data exist for the relationship between oxygen consumption and cell
growth rate, as oxygen consumption, historically, has been challenging to
measure accurately. A true yield coefficient of 2.9 gDCW/g 02 (FCR=0.34 ¢
02/gDCW) was determined as an initial estimate. However, newer methods are
available and should be leveraged for CM development. See Section 5.3 for
recommendations.

e Due toits low solubility, oxygen transfer is a likely limiting factor for bioreactor
productivity. Since the impact of oxygen deprivation on cell viability (death
rates) appears to be cell line dependent, more studies of CM-relevant cell lines
are needed, including the timescale of the response.

Stoichiometry of glucose metabolism and lactic acid production

Publications with data on glucose consumption under various conditions were more abundant in the
literature. Glucose consumption rates normalized on a DCW basis were plotted against the specific
growth rate of the cultures at the time of sampling (Figure 3.5c).

On average, most of the data clustered between 8-18 mmol Glc/gDCW/day and showed a general
trend of higher glucose consumption rates as growth rate increased. Considerable scatter was
observed, especially at low growth rates in small batch cultures and time intervals that may be prone
to error. The data clustered well around the more conservative assumptions made in prior TEMs
(Negulescu et al. 2023; Humbird 2021). However, our estimations for DCW based on cell type may
introduce errors, as only Miller et al. reported a real DCW of 265 pg/cell. For example, if cells weigh
more than assumed, the specific consumption rate on a DCW basis would decrease.

Sﬁ



This relationship between cell mass and growth rate was summarized previously in Figure 3.2f, which
showed that dry mass can change by more than a factor of two over the range of typical animal cell
growth rates. This substantial increase would make the trend line appear steeper. Of particular
interest was the study by Frame and Hu, who observed a kink in the line at growth rates above 1.2
day™, where the slope appears to suddenly change (Frame and Hu 1991a). This suggests a shift to
lower yields (i.e., a lower efficiency of glucose utilization) at high growth rates. The implications of
such phenomena are important to consider for CM processes, which are intended to run at high growth
rates aligned with these data. Collectively, this analysis underscores the importance of measuring
DCW across different cell lines used in cultivated meat, which can be used to derive a more accurate
assessment of the relationship between glucose consumption rate and growth rate.
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Maintenance requirement for glucose

According to the theory explained earlier, the plot of specific growth rate (W) vs. qg. should show a
positive intercept representing the minimum maintenance requirement. However, most of the
discernible trends in Figure 3.5c indicate a maintenance requirement that is very low and in some
cases less than zero. While Miller et al. estimated a glucose maintenance requirement of 1.2
mmol/1e’cells/day (4.54 mmol/gDCW/day; (Miller, Wilke, and Blanch 1987)), in a subsequent paper
they admitted: “The effect of 1 on the glucose metabolic quotient is not adequately described by the
maintenance energy model because the amount of glucose going into each of the metabolic pathways
depends on the glucose concentration and other factors, such as the pH and glutamine concentration.
Deviations in specific growth rate from a modified Monod model may also be due to the path changes.
New models ... that account for these path changes are required.”

Whether or not a maintenance requirement is indicated is likely a result of the regimen in which the
data were collected. If glucose is acting as the primary carbon source and contributing significantly to
the cell’s energy maintenance requirement, a positive intercept may well be observed for data
collected from a given experiment and medium. The data from Cruz et al. on a BHK cell line appear to
indicate a maintenance requirement of ~7.5 mmol Glc/gDCW/day (Cruz, Moreira, and Carrondo 2000).
However, where glutamine is contributing significantly, the maintenance requirement for glucose may
appear to be close to zero. Also, cells have an absolute requirement for glucose in the absence of any
other sugars for the synthesis of the carbohydrate portion of nucleic acids. However, some cell culture
media contain other nucleotide precursors.

Data from the literature are summarized in Table 3.5a for both the apparent and true biomass yields
using assumed maintenance requirements. The average apparent yield across all cell types and
conditions is approximately 0.461 gDCW/gGlc + 40%. As mentioned above, the FCR can be calculated
by taking the inverse of the apparent yield (Y’). Using this estimate, the range of FCRs for glucose
roughly spans 1.6 to 3.6 g Glc/g DCW.
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Table 3.5a: Glucose biomass yields and maintenance requirements for various cell lines found in the literature.

Reference Cell type Apparent Glucose| Maintenance Actual Glucose
Yield Y' x/Glc Requirement Yield
(gDCW /gGlc) mGilc (gGlc /gdbcw |Y x/Glc (gDCW /gGlc)
/day)
Miller et al., 1988 Murine Hybridoma 0.228 0.8172 0.3380
Jeong and Wang, 1995 |Murine Hydridoma 0.514 0.4504 0.8190
Lao et al., 1997 CHO 0.233
Cruz et al., 2000 BHK 0.097 1.3332 0.2367
Slivac et al., 2010 Channel Catfish Ovary 1.015
Lopez-Mesa et al., 2015 |CHO 1.185
CHO 0.905
O'Neill et al., 2022 Chicken Embryonic 0.248 0.9008 0.4432
Fibroblast
Chicken Embryonic 0.298 0.9008 0.4857
Myoblast
Murine Myoblast 0.303 0.4504 0.8986
(C2C12)
O'Neill et al., 2024 Murine Myoblast 0.160
(C2C12)
Averages 0.471 0.809 0.537
Previous TEM Assumptions
Humbird, 2020 Model - Wild type 0.3778
Humbird, 2021 Model - Enhanced 0.8558
Negulescu et al., 2022 |Model 0.2592
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Factors affecting glucose consumption rate

Like oxygen, glucose consumption rates are also clearly affected by the availability of substrate.
Several studies have shown that when glucose supply is restricted through fed-batch operation, its
consumption and the production of lactate are significantly decreased without compromising growth
rate or final cell concentrations (Glacken, Fleischaker, and Sinskey 1986; Ljunggren and Haggstrom
1994; Kurokawa et al. 1994). This implies that cells make more efficient use of energy-producing
substrates when available at limited concentrations.

This phenomenon has been known for some time and is often exploited by the biopharmaceutical
industry to increase growth and recombinant protein yields by controlling the addition of the key
substrates during fed-batch processes. One such process used the changes in pH induced by the
formation or uptake of lactate to control the addition of glucose (high-end pH-controlled delivery of
glucose or HIPDOG), resulting in a significant reduction in total lactate accumulation and base addition
with an approximately two-fold increase in therapeutic protein titer (Gagnon et al. 2011).

Apparently, the glucose concentration below which this metabolic shift is observed is on the order of 1
mM. However, plotting the available data for biomass yields based on glucose (Y’y.) collected during
this review did not show a discernible relationship with residual glucose concentration since most data
points were above this limit. Additionally, glutamine concentration, as will be described, also impacts
energy yields and varied across these studies, contributing to the data scatter. Successful
implementation of strategies to increase the efficiency of biomass yield on glucose in manufacturing
could reduce its cost contribution to media.

A few studies did attempt to separate these effects by measuring yield coefficients at very low glucose
concentrations. One such study by Acosta et al. is shown in Figure 3.5d, alongside other data (Acosta
et al. 2007). Performed in small-scale batch cultures, only those points where glutamine was not first
depleted are included. Under these controlled conditions, a 100-fold increase in Y’y is clearly
observed for this mouse hybridoma cell line as glucose concentrations fall below 1 mM.
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Figure 3.5d: Apparent biomass yields on glucose as a function of glucose concentration. Data from all available
studies. Trend line drawn through controlled study by (Acosta et al. 2007) but apparent yields are converted to a
dry mass basis from cell number, assuming a cell mass for this murine hybridoma cell line of approximately 271
pg DCW/cell and 75% water. Dotted red lines show the biomass yield assumptions used in prior TEMs.

Lactate formation and yields on glucose

Using many of the same data sets as depicted in Figure 3.5c, lactate formation rates and yields on
glucose consumed were also calculated and compared to growth rates and substrate concentrations.
Figure 3.5e shows cell-specific lactate formation rate as a function of glucose consumption, both in
molar units per unit dry cell weight. The dotted line through the origin with a slope of 2.0 represents
the maximum ratio of lactate formation to glucose consumed if all the glucose is converted to lactate
and does not enter the TCA cycle. While the data are fairly scattered, the trend suggests that glucose
is more efficiently used at lower consumption rates with a lactate to glucose ratio of less than 2. At
higher consumption rates, lactate formation rates increase to ratios higher than 2. This has been
observed by others with the explanation that the catabolism of glutamine can also result in lactate
production, leading to lactate:glucose ratios over 2.
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Figure 3.5e: Specific lactate formation rates as a function of glucose consumption rate. The blue dotted line with
a slope of 2 indicates the maximum ratio of lactate:glucose if all glucose is converted to lactate and does not
enter the TCA cycle.

When the same data are plotted as an apparent molar yield of lactate on glucose (Figure 3.5f), the
points show a loose correlation with an upward trend, with a global mean slightly below 1.5. The data
confirm the apparent molar yield of lactate from glucose observed by Miller et al. of about 1.5, which
is 75% of the theoretical maximum. Humbird also selected 1.5 for the wild-type metabolism, whereas
the “enhanced” metabolism was set at 0.5.
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Figure 3.5f: Apparent molar yield of lactate on glucose as a function of glucose consumption rate from all
available data. Red dotted lines denote the wild-type and enhanced metabolic quotients assumption used by
Humbird 2020.

Given the relatively high lactate yields, the Warburg Effect is clearly at play. Despite the adequate
supply of oxygen in these experiments, the majority of the glucose, and some glutamine, are not fully
oxidized but instead are shunted to lactate with a far lower energy yield. More recently, the Warburg
Effect and lactate production were eliminated using genome editing in CHO and HEK cells (Hefzi et al.
2024). The experiments showed that cells maintained normal growth rates by rewiring their
metabolism toward oxidative phosphorylation. Interestingly, data from Believer Meats using chicken
fibroblasts clustered around a lactate:glucose ratio of 0.5, suggesting efficient glucose metabolism
may be possible without engineering (Laura Pasitka et al. 2024). These experiments, as well as others
using alternative substrates such as galactose, point to the many tools that CM manufacturers will
have available to achieve favorable lactate:glucose ratios and efficient oxidative metabolism.

Lastly, the vast majority of lactate production rate data has been derived from proliferating cell
cultures and there is less known about the metabolism of differentiating cells. Culturing C2C12 murine
myoblast cells in a hollow fiber bioreactor operating under batch mode, Tuomisto et al. observed that
Juac during the differentiation phase dropped to about 24% from what it was in the proliferation phase
(Tuomisto, Allan, and Ellis 2022). However, this effect could well be attributed to a reduction in growth
rate and does not necessarily mean that differentiating cells have very different substrate needs on a
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per unit mass basis. This highlights another data gap in the literature that CM researchers can
investigate.

Key takeaways and data gaps

e The average apparent biomass yield for glucose (Y’X/Glc) across all cell types
and conditions collected is approximately 0.461 gDCW/gGlc + 40%. This range
in yield is equivalent to a feed conversion ratio (FCR) for glucose roughly
spanning 1.6 to 3.6 g Glc/g DCW.

e Restricting glucose below 1 mM can lead to dramatically increased biomass
yields for this key substrate and consequently decreased lactate production.
Maintaining low residual glucose concentrations is best achieved with
continuous or highly controlled fed-batch cell culture modes, which could
decrease glucose’s contribution to media costs and may improve bioreactor
performance.

e The Warburg Effect can be engineered or at least partially mitigated.
Practitioners should build on methods developed in the pharmaceutical sector
to reduce lactate:glucose ratios toward 0.5 by shifting cells toward more
energy-efficient oxidative metabolism.

e In general, the data for glucose consumption and maintenance requirements
were scattered, highlighting the flexibility of metabolism under different
conditions and the need for controlled experiments to be conducted in
CM-relevant cell lines. Data on glucose consumption during differentiation were
largely absent, highlighting a gap that CM researchers can investigate.

e The lack of a clear maintenance requirement is at odds with the known
dependency on glucose for the synthesis of nucleic acids for ribose. However,
this may be a small demand compared to total energy production and may be
obscured if nucleotide precursors are included in the medium.
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Stoichiometry of glutamine metabolism and ammonia production

Glutamine is known to degrade spontaneously in cell culture media by deamidation, resulting in free
ammonia and pyroglutamate. Most metabolic studies account for this loss by verifying it is minimal or
correcting specific consumption rate calculations. Since degradation is pH- and
temperature-dependent (and can be accelerated by certain anions like phosphate and bicarbonate),
models should include this effect unless a stable glutamine analog such as GlutaMAX is used.

As with glucose, glutamine consumption data were collected and normalized to DCW. Figure 3.5g
presents the glutamine-specific consumption data as a function of cell growth rate. Though these data
also show considerable scatter, most points fall between 0.5 and 7 mmol Gln/gDCW/day, with higher
growth rates generally linked to greater consumption. Thus, it appears that CM-relevant cell types
have a very similar glutamine uptake as other historic cell lines used for recombinant protein
expression, which should be verified through additional experiments.
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Figure 3.58: Specific glutamine consumption rate as a function of cell-specific growth rate. Circles are
hybridomas, squares are BHK cells, diamonds are fibroblasts, and triangles are fibroblasts. The Xs denote the
values assumed in recent TEMs of CM.
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Maintenance requirement for glutamine

Data from chemostats again provide the most consistent trends (Frame and Hu 1991a; Miller, Wilke,
and Blanch 1988). When fit linearly, the data show positive slopes with slightly negative y-intercepts,
suggesting no clear maintenance requirement from glutamine, which is consistent with prior literature.
However, all data assume constant DCW across growth rates, which is an oversimplification that may
introduce error (see Figure 3.2e). Due to the absence of a maintenance estimate, the summary of
glutamine yield coefficients collected in Table 3.5b is associated with a zero maintenance term.
Therefore, the apparent yields are equal to their corresponding true yields. The average biomass yield
for glutamine is about 1.98 gDCW/gGln + 23%, which corresponds to an FCR range of 0.4 10 0.65 g
Gln/gDCW. The FCR for glutamine is 3 to 5 times less than that for glucose.

While no definitive reason can be offered for the absence of a maintenance requirement for glutamine,
itis likely related to the fact that glucose and glutamine are partially substitutable energy substrates.
Furthermore, cell culture media are typically rich in other amino acids that can serve as an energy
and/or nitrogen source.

Table 3.5b: Glutamine biomass yields for various cell lines found in the literature. No maintenance requirements
have been reported and the data plotted in Figure 3.5¢g reveal a near-zero y-intercept. Therefore, the assumed
maintenance terms were set to zero.

Reference Cell type Average Apparent (Y' x/Gln) and
actual (Y x/Gln) Glutamine Yield
(sDCW /gGln)
Miller et al., 1988 Murine Hydridoma 1.157
Jeong and Wang, 1995  |Murine Hydridoma 4.355
Frame and Hu, 1991 Murine Hydridoma 0.979
Cruz et al., 2000 BHK 0.564
O'Neil et al., 2022 Chicken Embryonic Fibroblast 1.236
Chicken Embryonic Myoblast 2.680
Murine Myoblast (C2C12) 2.880
Averages (all cell types) 1.979
Previous TEA Assumptions
Humbird, 2020 Model - Wild type 2.823
Humbird, 2021 Model - Enhanced 7.058
Negulescu et al., 2022 Model 11.905
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Ammonia formation and yields on glutamine

Figure 3.5h shows the molar yield of ammonium from glutamine (mostly) as a function of specific
glutamine consumption rate. Similar to data shown previously for glucose, it is known that the faster
the cells grow and/or the faster that glutamine is taken into the cell, the more it is deaminated, freeing
glutamate to enter into various metabolic pathways. Consistent with this, there is a very clear increase
in ammonia yield with an increasing rate of glutamine consumption. This would be expected to level
out at the theoretical maximum for ammonia yield on glutamine of 2.0. However, other amino acids
can also be deaminated and contribute to ammonia release, which could push ammonia yields even
higher.
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Figure 3.5h: Apparent yield of ammonia from glutamine as a function of extracellular glutamine concentration.

Factors affecting glutamine consumption rate

As with other substrates, the availability of glutamine is also a factor in how it is consumed and
metabolized. Figure 3.5i confirms that there is a dramatic rise in glutamine efficiency at very low
residual concentrations. Similar to glucose (Figure 3.5d), Figure 3.5i shows that there is a threshold
below ~0.3 mM where the metabolism switches. This agrees well with the threshold determined by
Ljunggren and Haggstrom of 0.2 mM (Ljunggren and Haggstrom 1994) and others who have concluded
that glutamine is used less efficiently at higher concentrations, leading to even more ammonium ion
production (Butler and Spier 1984; Miller, Wilke, and Blanch 1988). Successful implementation of this
strategy in manufacturing could reduce glutamine’s cost contribution to media.
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TEMs by Humbird and Negulescu et al. are included in red.

In addition to specific growth rate and glutamine concentration, glutamine’s uptake rate is also
influenced by culture mode, serum concentration, and availability of other amino acids. The effects of
other amino acids are briefly discussed in the section on interactions, but in general, glutamine
metabolism appears tightly linked to the same regulatory pathways that control glucose metabolism.
Lactate yields exceeding 2 mol/mol of glucose are often observed, implicating glutamine catabolism in
lactate production. As glutamine concentration increases, both ammonium and lactate production
tend to rise, suggesting co-regulation of nitrogen and carbon waste metabolite pathways (Jeong and
Wang 1995)). Figure 3.5j shows the influence of glutamine concentration on Y’ . from available
data where biomass yields could be extracted.

Jeong and Wang speculated that at extremely low glutamine concentrations (< 0.1 mM), “cells do not
waste energy by converting pyruvate to lactate, which is the least energy-efficient pathway. Thus,
glucose consumption is not significantly increased until the cells are almost completely starved of
glutamine and forced to consume more glucose because they desperately need the energy for
survival.” Taken together, these data show that lactate formation is strongly influenced by residual
glutamine concentration as well as glucose. This helps explain the high degree of variability in biomass
yields on the two substrates from various studies.
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Figure 3.5j: Apparent yield of lactate on glucose as a function of glutamine concentration.
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Key takeaways and data gaps

The average biomass yield for glutamine is about 1.98 gDCW/gGln + 23%. This
yield range corresponds to an FCR from 0.4 to 0.65 g Gln /gDCW, which is
roughly 3-5 times less than that for glucose.

No clear maintenance requirement could be established for glutamine, likely
due to the fact that glucose and glutamine are partially substitutable energy
substrates and that other amino acids can serve as energy or nitrogen sources.
Restricting glutamine below ~0.3 mM can lead to dramatically increased
biomass yields on glutamine. Leveraging this in manufacturing could potentially
decrease glutamine’s contribution to media costs.

Lactate formation is strongly influenced by residual glutamine concentration as
well as glucose. This helps explain the high degree of variability in biomass
yields on the two substrates from various studies.

Spontaneous degradation of glutamine is a function of temperature and pH, and
should be mitigated in manufacturing and accounted for in metabolic studies.
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Stoichiometry of carbon dioxide (CO,) production

CO, generation follows from the catabolic fates of glucose and glutamine. Since O, is the only
substrate involved in this terminal reaction, the rate of CO, evolution (carbon evolution rate or CER) is
directly proportional to the O, uptake rate (OUR). This ratio is typically close to 1.0 and is referred to as
the respiratory quotient (RQ).

The RQ can vary with growth rate to some extent but even more so depending on what substrate is
being used for energy production. High RQs of approximately 1 indicate glucose is the primary energy
source, assuming complete oxidation, whereas an RQ of 0.83 would indicate glutamine catabolism,
and an RQ of 0.7 indicates lipid catabolism. However, these values are confounded with growth rate
and the degree of oxidation. At low growth rates where glucose is the primary energy substrate, less
lactate is produced, which represents a more efficient use of substrate than at higher growth rates. In
this case, the RQ may be as low as 0.8-0.9, as some of the oxygen is used for maintenance respiration
and NADH oxidation for biosynthetic pathways such as lipid synthesis. At higher growth rates, lactate
production rates increase, indicating reduced oxidative phosphorylation and incomplete glucose
oxidation. In these cases, the RQ can be greater than 1.2.

From the modeling perspective, the use of RQ offers a convenient shortcut for estimating CO,
production. Assuming an RQ of 1.0 will not lead to a major error in the calculated rate of CO,
production. However, if the specific uptake and secretion rates of glucose, glutamine, and other
metabolites are available, as proposed in our modeling application, the carbon evolution rate (CER)
can be calculated directly using their stoichiometric fates:

CER = 6 qaic* 5qam =3 Qrac =2 Qaia = 3qser = Chiomass X U Equation 3.5¢c
Symbol Definition Typical units
Coiomass  |Molar content of carbon in dry biomass mol C/gDCW
Jale, Gin, Lac, Ala, ser |OPECIfiC consumption or production rates mmol/gDCW/day
X Dry cell weight concentration sDCW

If alanine and serine are not included in the model, neglecting these terms should not result in
appreciable error since their production is often much lower than the other waste metabolites (Xiu,
Deckwer, and Zeng 1999). While CER and RQ can conveniently be measured online for a bioreactor
through the use of exhaust gas analyzers, the values obtained by themselves should be used with
caution as a clear indication of metabolic efficiency or as a control parameter (Xiu, Deckwer, and Zeng
1999).
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Key takeaways and data gaps

e The CO2 released by oxidation is proportional to oxygen consumption. The RQ,
which is the ratio between the cell-specific CER and the specific OUR, is
typically between 0.9 and 1.2.

e The online measurement of CER and RQ using off-gas analyzers is to be
encouraged but should be interpreted along with the other primary metabolites
to gain a complete picture of metabolism in real time.

e Itisunclearif the presence of CO2 has a significant effect on the stoichiometry
of catabolism but some is likely due to its disruption of pH gradients within and
around the cells.

Metabolic influence of lactate and ammonia accumulation

Over the years, various phenomena related to the coordinated regulation, metabolic feedback, and
cellular control of lactate and ammonia have been observed (see Appendix A3 for further analysis).
The degree of the effect can be cell line-dependent and it is recommended that further
characterization of these phenomena be performed in CM-relevant cell lines.

For lactate:

e Feedback inhibition: Elevated lactate can regulate its own production through glycolysis
(Ozturk and Palsson 1991; Cruz et al. 2000; Lao and Toth 1997). Its suppression may decrease
lactate yield from glucose (Y ,.c0) but overall lactate generation may increase. Lactate appears
to have only a minor impact on specific rates of glutamine update (qg.,), and the impact on
glucose consumption (gq) appears to be cell line- or condition-dependent.

e Adaptive responses: Cells adapted to high lactate conditions reduced Y, to ~0.39 from 1.4
in control conditions, improving tolerance to high extracellular lactate, productivity, and culture
pH stability via reduced requirements for base addition (Freund and Croughan 2018).

e Culture-stage dynamics: Cells have demonstrated the capacity to switch from lactate
production to lactate consumption during later culture stages, often after glucose depletion
(Freund and Croughan 2018).

e Cross-talk: Higher lactate levels are correlated with lower ammonia yields, indicating an
influence on glutamine metabolism (Miller, Wilke, and Blanch 1988).

For ammonia:

e Feedback inhibition: Ammonia yield from glutamine (Y snm/ain) likewise decreases at high
extracellular concentrations of ammonia (Cruz et al. 2000; Ozturk and Palsson 1991; Lao and
Toth 1997), with nitrogen being shunted to alanine instead (Miller, Wilke, and Blanch 1988).
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e Cross-talk: As for lactate, ammonia impinges on glycolytic flux. There is a mild suppression of
Y Lacsaic DUt overall glucose consumption may increase due to decreased energy yields. Its
impact on specific glutamine consumption rates appears to be cell line- or
condition-dependent.

e Adaptive responses: There is evidence that tolerance to elevated ammonia levels can also
occur, but this can take longer than the time of accumulation typical in common batch or
fed-batch processes.

These observations suggest that lactate and ammonia are not passive but play active roles in
regulating metabolic fluxes, with mechanistic explanations still being active areas of research (Torres
et al. 2024). While the forward catabolism of glucose and glutamine can be modeled by the empirical
yield equations, accounting for the added layers of interactions and feedback in the backward
direction is not as straightforward. Attempting to do so is complex and could quickly become
unmanageable. Thus, using an energetics-based model reflecting feedback inhibition of these waste
products on energy-producing pathways may be a more tractable modeling approach, as will be
discussed in later sections.

The influences of other amino acids on metabolism

Amino acid metabolism is closely tied to the same biochemical pathways that govern energy
production and substrate consumption. The consumption and release of specific amino acids depend
on the availability of glucose and glutamine and reflect the cell’s energy and biosynthetic needs
(Mancuso et al. 1998; Cruz et al. 1999). Table A1.1 in the Appendix summarizes the links between
TCA cycle intermediates and groups of structurally related amino acids, highlighting which ones are
typically synthesized, consumed, or used for anaplerotic or cateplerotic functions.

In general, essential amino acids cannot be synthesized and must be provided externally, though
species-specific differences can exist. For example, most fish and avian species cannot synthesize
arginine, while mammalian species are not dependent on its presence in the medium. The
nonessential amino acids alanine, glycine, asparagine, and aspartate are often produced and released
into the medium. Alanine, in particular, serves as an overflow metabolite and a nitrogen sink. Its
production rate can equal or exceed that of ammonium, but it drops significantly in the absence of
glucose because it is derived from glutamic acid and pyruvate. Therefore, alanine should perhaps be
included in a model for the sake of material balance, but the other amino acids do not typically have a
significant effect on growth and metabolism for a given medium.

These patterns shift depending on substrate availability. When glucose or glutamine is lacking, amino
acid uptake increases as cells compensate for missing inputs (Mancuso et al. 1998; Cruz et al. 1999).
For modelers, it is important to recognize that amino acid metabolism contributes substantially to
both biomass formation and energy balance. Interestingly, relatively little of the primary substrates
contribute to the carbon content of the cell, confirming their primary role as energy substrates rather
than a carbon source. Only 10% of carbon in cell mass is derived from glucose and 20% from
glutamine, unless the cell is an adipocyte accumulating lipids. The rest is mainly from the other amino
acids provided (Hosios et al. 2016). Understanding this variable stoichiometry is critical from a
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bioprocess perspective, as it directly influences key model outputs described in Section 2, including
bioreactor productivity and raw material requirements.

3.6 Energy metabolism and the role of energy carriers

Given the complexity and multivariate dependency of the above metabolic and growth processes,
many of the papers cited above also present calculations of ATP and NADH generation and
consumption as a basis for explaining the various metabolic patterns observed. As noted in Section
2.5, the production of energy carriers and their subsequent oxidation to transfer their energy might
offer a better way to account for the metabolic shifts that occur under varying substrate and culture
conditions, rather than attempting to model metabolism using strictly empirical correlations. While
Section 3.5 focused on the external substrates and waste metabolites, this section delves into what is
known of these intracellular substrates and their role in controlling metabolism.

ATP metabolism

Figure 3.6a presents all of the ATP production data that we could find as a function of cell growth rate.
While there are a limited number of data sets, the functional relationships are remarkably consistent.
The slopes of the trend lines for the three data sets have similar slopes, which represent the inverse of
the true (growth-associated) yield (Glacken, Fleischaker, and Sinskey 1986; Dimasi 1992; Miller,
Wilke, and Blanch 1989, 1987)(Glacken, Fleischaker, and Sinskey 1986; Dimasi 1992; Miller, Wilke,
and Blanch 1989, 1987). Each data set has a distinct y-intercept, representing the cell maintenance
requirement (Equation 2.4a) but the three values are roughly within 30% of one another. The data
from Ozturk and Palsson are also included but were from a study of the effects of oxygen availability
conducted in a chemostat where most of the data points are from steady-state determinations at the
same dilution rate and therefore similar growth rates ((Ozturk and Palsson 1990). Thus, no slope or
y-intercept could be determined. However, the data scatter falls within the same range as the other
studies when normalized by cell mass. Cell mass was not specifically reported in their study, so 271
pgDCW/cell was assumed for this analysis based on the average size of a hybridoma cell.
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Figure 3.6a: Cell-specific ATP production rates calculated by various authors as a function of growth rate.
Calculations are based on observed oxygen uptake rates and metabolite formation rates, mainly lactate. The
data from Miller et al. (1987) was a single measurement, but they established an error estimate denoted by the
error bar, which overlaps with their later study in 1989.

The yield coefficients determined from this data are summarized in Table 3.6a. The true yields
calculated from the slopes in Figure 3.6a are indeed very close at approximately 21 gDCW/mol ATP,
suggesting that the energy requirement for growth is very similar across these three cell types. The
maintenance requirements are not as close to one another but have an average value of 47 + 10
mmolATP/gDCW and are clearly non-zero. This difference could be due to different maintenance
requirements for the three cell lines or could be partially attributed to the different cell mass
assumptions used. However, all three groups apparently measured and reported the dry mass content
of the cells they studied.

DiMasi went one step further and measured cell size and mass as a function of growth rate (Dimasi
1992). He observed a significant and strong positive correlation with specific growth rate, which
confirms the more qualitative observations in earlier studies by Miller et al. Using the correlation
between cell mass and growth rate (shown in Figure 3.2f), each data point in Figure 3.6a was
corrected for the actual cell mass at each growth rate. Had this not been possible, the apparent slope
would have been significantly higher and is reminiscent of the data for glucose uptake rates at high
growth rates measured by Miller (shown in Figure 3.5c above).
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Table 3.6a: Apparent and true biomass yields and cell maintenance requirements on ATP (in molar units) from
various literature sources. The maintenance terms were deduced from the y-intercepts in Figure 3.6a and the
true yields from the slopes according to Equation 3.4a.

Reference Cell type Average Apparent (Measured or Assumed| Actual ATP Yield
ATP Yield Y' x/ATP Maintenance Y x/ATP
(gDCW/mol ATP) mATP (gDCW/mol ATP)
(mmol ATP /gDCW/day)
Glacken et al., Human Fibroblast 4,90 37.00 19.96
1986 FS-4
Miller et al., 1987 [Murine Hydridoma 5.31
Miller et al., 1989 |Murine Hydridoma 7.55 54.34 21.88
Ozturk & Palsson, |Murine Hydridoma 12.73 45.67 61.61
1990
DiMasi, 1992 TK6 7.32 52.68 24.62
Averages (all cell types) 7.56 47.42 32.02

All the above is consistent with the conclusions of others. Ozturk and Palsson, in their oxygen study,
observed that cells obtain ATP at a relatively constant rate of 0.58 pmol per million cells per hour. At
the near constant growth rate of 0.645 day™ used in their chemostat study and an assumed cell mass
of 169 pgDCW/cell, this production rate translates to an apparent ATP yield of 7.9 gDCW/mol ATP.
This apparent yield aligns well with the average value shown in Table 3.6a.

Recall that apparent yield implicitly includes the maintenance requirement as well as the biosynthetic
demand for ATP, such that the former is always less than the latter. The large difference between the
apparent and true yield coefficients implies that the maintenance requirement represents a significant
fraction of the total energy demand of the cells. This is supported by Miller et al., who calculated the
fraction of energy metabolism required for non-growth-associated processes (i.e., maintenance) to be
62% of the total specific ATP consumption rate at a specific growth rate of 0.66 day™. Particularly at
low growth rates, animal cells can have maintenance requirements well above half of their total
energy demand. This is a hallmark of animal cell metabolism when compared to microorganisms,
which have a much lower maintenance requirement and therefore nearly equal true and apparent
yields for ATP.

This constant requirement for ATP is supported by studies done with alternative carbon sources.
Glacken tested this hypothesis by using galactose and found a consistent 1.7 mmol ATP/gDCW/hr (41
mmol/gDCW/day) as the specific ATP formation rate, whether the human fibroblast FS-4 cells were
grown on galactose or glucose at both high and low concentrations (Glacken, Fleischaker, and Sinskey
1986). This constant energy demand was observed despite a much reduced consumption of the
substrate and formation of lactate for the galactose case compared to the glucose control.
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Interestingly, most of the energy produced with galactose was from oxidative phosphorylation,
whereas about two-thirds of the energy from glucose was derived through glycolysis.

NADH Metabolism

Of the several papers that examined the effect of substrate and waste metabolite concentrations on
ATP yields, the authors also invoked the role of NADH, another critical energy carrier and reducing
agent, to explain observed behavior. A few studies went as far as calculating the yield of this energy
substrate based on the consumption patterns (mainly for oxygen) and known catabolic and anabolic
pathways active in animal cells. We were not able to find direct biomass yields based on NADH but
were able to back some out based on the dissertation of DiMasi, who studied TK6 lymphocytes in
continuous culture under several different limiting conditions (Dimasi 1992). When specific NADH
consumption (or production) rates were plotted against specific growth rate, the various conditions did
not align, and the lines had variable slopes but were relatively flat. Similarly, when apparent yields
were plotted against growth rate (Figure 3.6b, panel 1), each set of conditions had very different
NADH requirements, suggesting that there is no absolute requirement for growth, unlike ATP. Whereas
the biomass yields are only mildly dependent on growth rate, likely due to the lack of a discernible
maintenance requirement, the biomass yields on NADH do appear to increase with increasing growth
rates. When the ratio between the moles of ATP and NADH produced is plotted with growth rate, there
is no consistent trend, with yields ranging between 2 to 8.5 mol ATP/mol NADH. However, they do
appear to converge at high growth rates toward a ratio between 3 and 5, which is close to the
theoretical yield of 3 ATP generated from one NADH molecule. This is likely due to changing relative
fluxes between glycolysis and the TCA cycle as growth rates increase.
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Figure 3.6h: Biomass yields (panel 1) and molar ATP yields (panel 2) on NADH as a function of specific growth
rate of TK6 lymphoma cells. Data from (Dimasi 1992). Five conditions were tested in continuous culture at
various dilution rates (growth rates): a standard medium with 10.45mM Glc, 3.8mM Gln, 0.382mM Leucine
(Leu), and 21% DO (% air saturation); Low Gln, reduced to 0.5mM; Low Glc, reduced to 0.9mM; Low Leu,
reduced to 0.0572mM; Low Oxygen, reduced 0.4%.

The effect of oxygen concentration on NADH-based yields sheds further light on the metabolic control
of energy production. Figure 3.6¢c shows NADH yields calculated from the specific consumption and
production rates observed in studies by Ozturk and Palsson of the impact of oxygen and pH on
metabolism (Ozturk and Palsson 1990, 1991). As dissolved oxygen concentrations are decreased, the
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production of NADH from glutamine is reduced. NADH levels in the cell increase because they cannot
be oxidized, which in turn inhibits any further consumption of glutamine for catabolic purposes.
Because less NADH is produced, the energy equivalents need to be produced by other means,
primarily by glycolysis, which has a very different ratio of the moles of ATP produced compared to
NADH.

160 Q 0 8
@Y X/NADH
©Y'NADH/GIn 7
= 140 ATP)
E ) Molar yield on glutamine BATPINADH ¢
< Biomass (Y'NapHiGin) @
< yield 6
g 120 (Y*xaom) 4 o
£ o 3
s ¢
= 5 E
100 <& £
> B, Molar ATP yield on NADH =
L ) Y ] 4 T
2 ( ATPINADH) . . d_>J'
Z 80 ] 5
g Theoretical molar yield of ATP on NADH =
_____________________________________________________ 3 0O
T é =
2 © e
20 0
0% 1% 10% 100%

Dissolved oxygen concentration (% of air saturation)

Figure 3.6c¢: Biomass yields and molar ATP yields on NADH and NADH yields on glutamine consumed as a
function of dissolved oxygen concentration ((Ozturk and Palsson 1990)). Interpretation explained in the text.

Consequently, at very low DO concentrations, there is a rapid differential in all parameters noted. The
molar ratio of NADH produced per glutamine consumed decreases significantly as DO is dropped
below 1%, trending toward zero. Therefore, biomass yield based on NADH rises sharply as does the
ratio between ATP molecules produced compared to NADH. However, at DO concentrations above 1%,
these metabolic quotients level out as Y’ yappan trends towards 5 and Y’ yrpnaon trends toward its
theoretical value of 3.

At the highest point, the NADH yield is approximately 6 moles NADH per mol of glutamine consumed
at dissolved oxygen concentrations in the 5-20% air saturation range. Since three ATPs can be
reactivated from a single NADH molecule, the total energy yield in terms of ATP would be 18 mol
ATP/mol Gln. This would mean that the glutamine is almost completely oxidized through the TCA cycle
under these conditions (Ozturk and Palsson 1990).
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Key takeaways and data gaps

e The total ATP required to support cell growth is remarkably consistent between
cell types under normal conditions when normalized to dry biomass —
approximately 8 gDCW/mol ATP consumed.

e A maintenance requirement is evident and thus its ATP’s consumption
conforms to the semi-empirical model of (Pirt 1965).

e NADH production is not as consistent stoichiometrically and varies with growth
rate and the availability of substrates.

e The molar yield of NADH from the consumed glutamine can range from zero to
over 8, but tends toward 6 under optimal oxygen concentrations and higher
growth rates, indicating that most of the glutamine is fully oxidized.

e The molar ratio of ATP produced to NADH produced can also vary above 3, but
also trends toward its theoretical value of three at high growth rates and when
sufficient oxygen is present.

Influence of pH on energy metabolism

Since pH is also of interest as a potential optimization parameter, we noted the data from the Ozturk
and Palsson study of the effects of medium pH on growth and metabolite kinetics in addition to serum
and oxygen concentrations (Ozturk and Palsson 1991). They found that, “medium pH did not alter the
cell specific oxygen uptake rates but that ATP production continually increased with increasing pH due
to the increased glycolytic activity as measured by glucose uptake rate.” This is also supported by the
increased lactate-on-glucose yield at higher pH. The yield of NADH on glutamine trended in the
opposite direction. Even though glutamine uptake increased slightly with increasing pH above pH 7.2,
NADH yield decreased continually over the pH range of 6.8 to 7.8.

It was also noted that oxidative phosphorylation contributed to ATP production at a relatively constant
rate over the range of pH studies, except at the lower pH values, when the percentage of this
contribution increased. At pH 6.9, cells obtained about 76% of their energy from oxidative
phosphorylation, whereas at pH 7.65 this contribution was approximately 25%. Inhibition of glycolysis
at low pH is well established and can explain the shift toward oxidative phosphorylation.

Glutamine consumption was at a minimum at pH 7.2, the optimal pH for the growth of this cell line.
However, compared to glucose, it was fairly constant. Thus, the glucose/glutamine consumption ratio
was a strong function of pH, where glutamine contributed significantly to energy production at low pH.
The yields of the other metabolites, including the various amino acids connected to these pathways,
were thus affected in a similar manner.
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Key takeaways and data gaps

e pH can cause a marked shift in the amount of energy derived from glycolysis
compared to oxidative phosphorylation, where the latter is favored by lower pH.

e The impact of pH on energy production is likely related to its impact on proton
gradients in the cell and underlies the inhibitory effects of lactate and ammonia.

e Due to these interactions, pH may be an important optimization parameter for
future CM processes. The effects of pH and these inhibitors on cellular
maintenance requirements should be further studied.

Cellular response to sudden changes in substrate concentrations

In addition to the studies presented above examining the stoichiometry of growth under varying
substrate concentrations, a few of the same authors also studied culture dynamics in response to
sudden changes. Capturing these transients necessarily required a shorter timeframe. As mentioned,
the rate of cellular response is of interest because it may serve as a clue to how cells may react to
potential concentration gradients and depletion zones in a large-scale bioreactor. These transient
responses also shed light on the regulation of cellular metabolism and energetics. For a rapid change
in the concentration of a single substrate, it is useful to observe the associated changes for several of
the key substrate and waste metabolites to gauge the approximate sequence of cellular events.

To get a sense of the speed at which animal cells respond to a change in substrate concentrations, the
experiments performed by Miller et al. offer significant insight using continuous culture in a chemostat
mode (Miller, Wilke, and Blanch 1988). In these studies, once the culture had stabilized at a steady
state, the DO concentration was abruptly changed by entering a new DO setpoint into the control
system. Immediately after the change, substrate and metabolite concentrations were tracked as a
function of time. By keeping the sampling time intervals relatively short, the various metabolic
quotients and specific rates could be computed. The study covered DO concentrations from 0.1% to
100% of air saturation with a total culture duration of 25 days (the steady state results were used to
generate Figure 3.5a above).

To focus on the transient responses, Figure 3.6d covers a time period that spans only two DO
concentration transitions: 0.4% to 0.1%, which was the lowest DO concentration studied and induced
a severe oxygen limitation, and the change from 0.1% back to 10% DO. As noted in Section 3.3, 10%
of air saturation is well above growth-limiting conditions for animal cells. Based on the data points
available, we fit a trend line through the points that we felt was a good approximation of the response
for each substrate consumption rate and for each metabolite yield. While there are time gaps of about
15 hours when no sample was taken, it is the only data set available with this resolution. Due to the
low solubility of oxygen, the control response to a change in DO setpoint would be on the order of
seconds to minutes. As can be seen in Figure 3.6d, the most rapid changes appear to be on the order
of minutes to hours; however, the resolution post-change was a few hours at best. Nonetheless, the

Sﬂ



time profiles do provide an approximation of cause and effect. The two transitions are discussed
sequentially below.
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Figure 3.6d: Traces of oxygen, glucose, and glutamine specific consumption rates, calculated ATP specific
production rate, and yield factors for lactate, ammonium, and alanine around the transitions in DO
concentrations in a continuous bioreactor. The first transition shown in this figure is from 0.4% air saturation to
0.1% at around 380 hours into the run and then from 0.1% to 10% at about 543 hours. The ATP-specific
production rate (qamp) is divided by two to better fit on this graph. Data from (Miller, Wilke, and Blanch 1988).

Sudden transition to growth-limiting oxygen concentrations (0.4% to 0.1% air saturation)

In this case, the DO concentration was already low at 0.4% before the change and thus the lactate
yield reactive to glucose (Y’ ) Was already near its theoretical maximum of 2 mol Lac/mol Glc.
Once the setpoint was dropped to 0.1%, there was a precipitous drop in specific oxygen consumption.
Not surprisingly, due to its low solubility, the oxygen available was quickly used up, which forced a
reduction in uptake. Under these conditions of oxygen deprivation, the cells shift to deriving most if
not all of their energy from glycolysis because oxidative phosphorylation is not possible through the
TCA cycle. This results in a dramatic increase in glucose uptake and in ATP production through
glycolysis. Note that the specific ATP production rates were divided by two to fit on the graph. Thus,
ATP is being generated at roughly twice the rate of glucose uptake, reflecting the net production of 2
ATP per glucose consumed. Of particular note is that the rise in ATP production rates is almost
immediate, whereas the rise in glucose consumption per cell rises more slowly over minutes, initially,
to many hours. A maximum is reached in about 50 to 60 hours post-change. There is a spike in Y’ /g1
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that roughly corresponds with this temporary maximum that is greater than 2.0, meaning that amino
acids are also being catabolized through the glycolytic pathways.

The specific consumption of glutamine (qg,,) drops almost as precipitously as q,,, which means that
some of the glutamine was contributing to energy production, but if oxygen is scarce, it can no longer
be oxidized through the TCA cycle. In general, qq, follows the qg, trajectory and trends in the opposite
direction of glucose consumption (qg.) because of its dependency on oxygen for catabolism. A rise in
residual glutamine concentrations was observed (data not shown) during this transition phase. While
both consumption rates drop, g, does not fall as far as q,. It is speculated that biosynthetic
intermediates previously derived from glucose must now be provided by glutamine. Increased
glutamine consumption at lower values of qq, would be expected to increase the mitochondrial
NADH/NAD ratio. This would inhibit a number of the TCA cycle reactions and lead to increased
concentrations of TCA cycle intermediates. Such a build-up of TCA cycle intermediates would provide
additional precursors for aspartate and asparagine synthesis and might also be expected to reduce the
consumption of amino acids that are metabolized to acetyl CoA or TCA cycle intermediates. Higher qg,
also provides more nitrogen for biosynthesis and may be expected to result in higher specific
production rates for alanine and ammonia. As can be seen in Figure 3.6d, the average yields of
ammonium and alanine are higher at 0.1% DO than they are at 10% DO.

Changes in the metabolism of other amino acids were also noted when oxygen was limited. Additional
aspartate and asparagine were produced at low DO due to an apparent increase in TCA cycle
intermediates that resulted from the higher glutamine consumption rates required to replace
metabolic intermediates previously derived from glucose (data not shown). Miller et al. also
speculated that high NADH levels directly inhibit the oxidation of glutamine as well as glycine and
branched-chain amino acids (Miller, Wilke, and Blanch 1988).

Sudden transition to non-growth-limiting oxygen concentrations (0.1% to 10% air
saturation)

The transition from a condition of oxygen deprivation to one of excess results in a reversal of the
responses observed in the previous case. With the sudden availability of oxygen, there is a rapid if not
immediate decline in qg.. The lactate yield (Y’ . q.) follows but with a substantial lag, suggesting that
glycolysis continues at the pre-change rate for many hours even after the drop in glucose
consumption. It only levels out at about 1.5 mol/mol as qg, also reaches a new steady state. Before
this, a minimum in Y’ ... is observed, which may reflect the increased use of glycolytic intermediates
for biosynthesis during the increase in cell concentration. The cell concentration profile is not shown in
the graph because the main objective of Figure 3.6d is to show the metabolic interactions, but the cell
concentration also varies during these changes in an attempt to balance the nutrient supply rate.

Interestingly, there appears to be a lag in the rebound of oxygen and glutamine uptake (qo, and qg.)
after the sudden increase in DO. Despite the availability of oxygen, the uptake of oxygen and the
catabolism of glutamine appear to be inhibited, perhaps because of the high ATP production rates and
its availability. During this phase, glutamate yields were seen to increase (data not shown) transiently
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when qg, increased in response to the increase in the oxygen supply, and then decreased at the 10%
DO steady state. Glutaminase is activated by many effectors, including ATP, which could explain the
initial increase in qg,, at 10% DO. Also, the maximum in g, lagged behind that of qg;,, which illustrates
the buffering effect of the TCA cycle and connecting pathways.

In general, specific ammonia and alanine production rates follow those of qg,,; however, there are
more pronounced oscillations in the yields of both end products around the transition points. The
increase in gy lagged behind the other two and the overshoot for ammonia is larger than that for
glutamine. These differences between qg,, and g, indicate that the fate of glutamine is changing
during the oxygen transients. The dip in ammonium and alanine yields after the increase to 10% DO
suggests that much of the nitrogen from glutamine was being used for biosynthetic reactions in
preparation for rapid cell division.

The yield for alanine shown in Figure 3.6d is the sum of the yields calculated for the alanine produced
from glucose as well as glutamine. Notably, the production of alanine is at least as prevalent as the
production of ammonium and, therefore, from a material balance perspective, should be included in
modeling efforts. In fact, on average, the total alanine produced is 20% higher than ammonium,
indicating that the pathway via transamination of pyruvate is a significant one. The generation of
alanine from glucose is roughly a third of that produced from glutamine but is not insignificant. It may
be worth noting that the portion of alanine generated from glucose rose from roughly 27% of the total
at 0.1% DO to an average of 41% when the DO was increased to 10% air saturation, probably as a
result of the generally higher glycolytic flux when oxygen is not limiting growth.

In a similar set of studies, Miller et al. also measured changes in metabolism in response to sudden
changes in glucose (Miller, Wilke, and Blanch 1989). These studies are instructive in showing the
control over energy production. Also, measurements were done on a shorter timescale than the ones
described above for the oxygen concentration study and thus give a better sense of the speed at which
animal cells respond to a change in substrate concentrations. Figure 3.6e presents the results of a
glucose pulse experiment where the concentration was abruptly increased in a chemostat from a
residual concentration of 0.1 mM to 6.6 mM. At the pre-pulse concentration (0.1 mM), the culture was
almost certainly limited by glucose. Various metabolite yield coefficients are plotted to show the
timing of their response as the glucose falls with washout following the sudden increase. Only those
species that showed a significant shift are shown in the figure.
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Figure 3.6e: Response of a murine hybridoma cell line in a continuous culture to a pulse change in glucose
concentration. The simultaneous response profiles of glucose concentration and the specific rates of glucose
and oxygen consumption and lactate production are superimposed. Data from (Miller, Wilke, and Blanch 1989).
ATP production rates are not included in the graph because they were relatively constant during this experiment,
except for a slight dip immediately after the pulse.

The specific glucose consumption rate (qg,) increased by 100-200% immediately after glucose was
added to the reactor (t=0). This response was on the order of minutes if not seconds; the time
resolution of the experiment was inadequate to distinguish absolute response rates. Concurrently,
there was an immediate decrease in the specific oxygen consumption rate, followed by a slow climb to
pre-pulse levels over the course of 40-50 hours. The sudden drop in oxygen consumption occurred
even though plenty of oxygen was available and total ATP production also appeared to experience a
short dip before regaining its original rate after about 8 hours. The authors attributed this response to
a shift from oxidative energy production to increased glycolytic ATP production.

As expected, the specific lactic acid production also increased after the pulse but lagged behind the
immediate increase in qg.. This can explain why the specific ATP production rate was below the
pre-pulse value during the first few hours (data not shown), because the initial increase in glycolytic
ATP production was not immediately sufficient to offset the decrease in q,,. However, it should be
noted that ATP and NADH were not measured directly in these experiments. They were calculated
from the consumption rates of the other substrates (primarily oxygen) and the production rates of
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lactate and ammonium. Therefore, if there is a lag in their response to changing conditions, the
response of energy metabolism may appear to be delayed.

Interestingly, the lactate-on-glucose yield in the above glucose pulse experiment was at first inhibited
to almost half of its prior value (1.43 to 0.75 mol Lac/mol Glc) and took several hours to regain full
glycolytic activity. While glycolysis and oxidative phosphorylation are both major sources of ATP
production, their relative importance depends on the cell line and growth conditions. At high glucose
concentrations, the oxidation of glucose, glutamine, and other amino acids is inhibited and glycolysis
accounts for a majority of the ATP generated. Glucose oxidation via the TCA cycle is always low, but at
low glucose concentrations and for sugars other than glucose, most of the ATP generation has been
attributed to glutamine oxidation (Miller, Wilke, and Blanch 1988).

Key takeaways and data gaps

e The above works by Miller et al. (1988 and 1989) are good examples of how the
dynamic control of metabolism can be determined in real time.

e More experimentation like this, with greater time resolution, is needed to give a
more accurate determination of response times.

e Such studies can give important clues to how cells may behave in a bioreactor
with heterogeneous conditions, as well as provide meaningful insight into the
dynamics of cellular metabolism.
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3.7 Summary and discussion

We have concluded a comprehensive review of the foundational scientific literature from the 1980s to
the present of what is known about the growth and metabolism of animal cells. Starting with the cells
in Section 3.2, we reviewed available data on cell composition for as many cell types as we could find,
including some that are relevant to CM. By virtue of its composition, cell type is a key determinant of
the final CM product’s nutritional profile. Its mass, more specifically its dry mass, is what ultimately
defines output and cost, but there is little data available, even less so for CM-relevant cell lines. In
fact, it appears that recent CM TEMs overestimated the mass of a typical cell, as size does not
correlate directly with mass (Figure 3.2c). Furthermore, not only do cells of different types vary in
mass and size, the same cell line’s size is a significant function of growth rate (Figure 3.2f).

Cell type also informs the maximum specific growth rate, which is a function of temperature and pH.
In Section 3.3, we reviewed what is known about the kinetics of cell growth and death with respect to
these major control variables as well as the availability of substrates. Unfortunately, very little data
was available on cells undergoing differentiation. Monod constants, used to quantify the reduction in
growth rate as a substrate is depleted, varied by over an order of magnitude for the same cell types.
This variability is likely due to a number of factors, including serum concentrations and mode of
culture as well as temperature and pH. These half-saturation constants appear to be different for
similar cell types grown under batch or continuous conditions, suggesting a time factor. Apparently,
there can be multiple transporters, each with a different affinity for the same substrate, and that may
be expressed under different conditions (Bosdriesz et al. 2015). Stationary versus suspension culture
also seems to affect the growth kinetics.

The direct effect of waste metabolites on cell growth and death was reviewed in Section 3.4. Almost
all the experiments attempting to quantify the degree of growth inhibition or death rate as a function
of the metabolite’s concentration were done under conditions of acute and sudden exposure through
the spiking of various concentrations of the inhibitor. We now know that the IC50s determined from
such studies likely overestimate the inhibitory properties of the metabolite. The individual conditions
were not always adjusted for osmolality as a result of the addition of the biochemical as a salt and the
resulting pH differences. Both of these can affect growth rate in addition to the metabolite being
studied. More exciting is the observation that cells can better tolerate these inhibitory substances if
they are given the time to adapt, suggesting genetic-level regulation and an opportunity to mitigate
inhibitory effects.

In Section 3.5 on the stoichiometry of growth, we found that the quantitative consumption of
substrates and the associated formation of inhibitory metabolites are highly variable. The complex
coordination of glucose and glutamine uptake is a function of their availability (i.e., their concentration
in the extracellular medium). The variability in their consumption also leads to a highly variable output
of lactate and ammonium. However, this dependency can be used as an advantage. Ljunggen and
Haggstrom showed that when both glucose and glutamine are restricted, the hybridoma cells
displayed an even higher metabolic efficiency than if either substrate was restricted individually
(Ljunggren and Haggstrom 1994). Similarly, Kurokawa et al. found biomass yields (Yyq.) increased
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more than two-fold for glucose, and lactate was reduced by one-third, seemingly as a result of
intracellular lactate dehydrogenase (LDH) activity being halved (Kurokawa et al. 1994).

The coordinated consumption of these primary energy substrates is also closely tied to the energy
status of the cell, which can be represented by the intracellular concentrations of the primary energy
carriers ATP and NADH. As the end products of catabolism, these energy carriers, along with lactate
and ammonia, control their generation through direct feedback inhibition of major biochemical
pathways by direct interaction with the allosteric enzymes that catalyze them (see Figure A1.2 in
Appendix). Thus, substrate concentrations dictate how they and the products of their catabolism are
consumed.

Animal cells generally have a higher maintenance energy requirement than microorganisms, but
energy generation is exacerbated by the Warburg Effect, which further increases substrate demand
due to incomplete oxidation. However, a key finding during this review is that cells of very different
lineages appear to adjust their utilization of metabolic pathways to maintain a constant g, even
under varying nutrient conditions. Thus, using a fixed energy demand provides a unifying currency on
which to base mathematical models of substrate utilization.

Still more needs to be understood about the Warburg Effect but the leading hypothesis for its origin is
that it allows cells to grow more quickly. More recently, there is evidence that the mitochondria
themselves are involved. They may be altered biochemically, up- or down-regulated in terms of the
number per cell and the speed at which active transport systems can shuttle key metabolites between
the mitochondrial millieux and the cytoplasm (Martins Pinto et al. 2023; Bouchez et al. 2020).

Together, all the above mechanisms reveal how animal cells flexibly regulate substrate use based on
the demand for ATP, redox balance, and biosynthesis. This multidirectional and multifaceted control
system is a consequence of many interactions. Taking the Warburg Effect as an example, there
appears to be a time element, possibly involving transcriptional and translational controls. On the
shortest timescale, these interactions are nowhere more evident than in the perturbation experiments
mentioned in Section 3.5, where certain metabolites or substrates are suddenly spiked into a culture.
The speed at which cells respond gives an indication of the more immediate control mechanisms.
Responses on the order of seconds can only be accomplished by enzymes either through allosteric
control, direct competition, or inhibition of substrate binding (i.e., Crabtree effect). However,
responses on the order of minutes may be controlled by diffusional or transport limitations or the time
it takes internal reservoirs of certain metabolites to be depleted or replenished.

Amino acid metabolism, while not the central focus of this review, is closely tied to the same
biochemical pathways that govern energy production and consumption. As noted in Section 3.5, the
consumption and release of specific amino acids depend on the availability of glucose and glutamine
and reflect the cell’s energy and biosynthetic needs. When glucose or glutamine is lacking, amino acid
uptake increases as cells compensate for missing inputs (Mancuso et al. 1998; Cruz et al. 1999). In
general, amino acids contribute substantially to both biomass formation and energy balance. There
may be instances where their inclusion in a model mechanistically would be of interest, however, their
respective consumption or accumulation extracellularly appears to be relatively consistent for a given
medium.
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Section 4. Challenges and opportunities for cell growth
modeling

In support of the original objective of this work, Sections 2 and 3 set the groundwork for the
construction of more predictive models of animal cell culture process performance, which in turn can
better inform experimental work in cultivated meat and future TEMs. Our review led us to conclude
that predictable, scalable, and cost-effective processes are within reach through integrated modeling.

4.1 The case for modeling to support bioprocess design and TEMs

A unique aspect of this proposed model system is that it is aimed specifically at bioreactor-based
process development and scale-up. This application lies at the intersection of cell behavior, media
optimization, and bioreactor design and operation. Most modeling applications cater to one or the
other but not both. Our approach to join a Cell Model with another model representing the physical
aspects of a bioreactor and its control system (Figure 1.3) means that overall complexity needs to be
managed from the perspective of both the level of technical input required and the computational
demands.

As mentioned earlier, we believe that no single model can satisfy all future needs as CM technology
continues to develop. As much as we would like to establish a single definitive approach to modeling
cell behavior in bioreactor systems, the needs of the industry are sure to change as the anticipated
variety of CM and hybrid products approach commercialization. However, the core model of cell
behavior, we believe, can be based on the concepts reviewed in this paper.

Unfortunately, due to the large number of interactions identified in this review, a purely empirical
model does not seem practical. To model such a system empirically, a functional relationship would be
required for at least the most prominent interactions. Such a model is likely to quickly become
intractable if it includes all the necessary details to be predictive. However, by invoking energetics and
specifically the role of ATP and NADH, a more mechanistic depiction is possible. The observation that
biomass yield across multiple cell types can be based on a constant energy input is unifying. The
moles of ATP required for cells to grow and maintain homeostasis provides a basis for normalization
even though the consumption of the primary carbon and energy substrates vary widely. Thus, using
energetics may be a more manageable way of accounting for metabolic shifts than relying on empirical
functions describing specific substrate consumption based on various factors. We believe this key
observation will allow a model to be constructed without resorting to very large reaction networks as
those used in metabolite flux models.

This underserved need will require careful balancing of complexity with predictive ability. This balance
may be different between specific applications but the ultimate yardstick is whether important
process trade-offs can be evaluated to enable comparison of performance-to-cost ratios (PCRs) and
assessment of the impact of various cost drivers as they relate to overall performance.

As examples, the following questions illustrate the type of performance and cost trade-offs that could
be supported by the appropriate model.
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1. Should all nonessential amino acids be included in the growth medium in addition to the
essential ones or does the elimination of expensive ones outweigh the sacrifice in maximal
growth rates? The current belief is that their reduction or elimination would be
counterproductive. Maximal growth rates would likely be lower and additional inhibition may
occur because of the cells’ increased ammonium production due to their reliance on glutamine
to support the synthesis of these amino acids for protein formation.

2. Do changing factors such as pH, temperature, and osmolality benefit physical bioreactor
performance that may outweigh a deviation from the optimal conditions at small scale?

3. What type of bioreactor is best suited to proliferating cells in a suspension mode? An airlift
bioreactor may have a somewhat lower volumetric productivity but a higher PCR (at the
bioreactor level) due to its lower fabrication cost. It could require higher gas input to provide
comparable motive force for mixing and aeration (i.e., higher utility costs) and may require
greater structural support in its installation, lowering the PCR at the facility level (Table 1.1).

4. A bioreactor designed for suspension culture is unlikely to be the best choice for differentiating
cells into a tissue in a stationary matrix. Cell-type dependencies will also be factors, with some
companies developing custom bioreactors for adherent fat cell culture as a means to avoid
their buoyancy issues in suspension.

5. Different reactor designs or materials of construction may have different setup, sterilization,
and/or cleaning requirements. When comparing such designs, cycle-averaged volumetric
productivities should be compared, which account for the differential durations of these
operations when the bioreactor is not actively producing product.

The digital twin

Digital twins are already in development and used in the biopharmaceutical sector (Ranpura et al.
2025), and they can offer a clear opportunity for CM to accelerate development while minimizing risk.
These tools enable predictive modeling, reduce experimental burden, and help identify failure points
early in process design. Given the scale required for CM to reach cost targets and compete with
conventional meat, relying on trial-and-error or isolated experimental results is not a viable approach.
Several companies have already faced setbacks after scaling too early without a sufficient
understanding of process constraints. These outcomes highlight the importance of integrated
modeling approaches that reflect the complexity of real production systems.

The construction of useful digital twins will necessarily be an evolution, but the alternative is to
proceed by trial and error. Given the scale and cost of the required bioreactor systems, such an
approach could discourage further investment if it is deemed high-risk. We are not advocating for a
blind trust in such models. Rather, we encourage an iterative process whereby initial models are
gauged against real-life data to build confidence in their predictive capabilities and to incrementally
improve them.
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Harnessing artificial intelligence

The emergence of artificial intelligence (AI) and machine learning offers an unprecedented
opportunity for model development and improvement. Perhaps even more exciting is harnessing Al to
streamline experiments needed to determine model parameter values. There is already a precedent in
the biopharmaceutical industry over the last five years of deploying such hybrid digital twins to help
identify the most important factors influencing a process’s overall performance. Mathematical models
have already been coupled with machine learning to augment predictive power and assimilate new
data. This has the potential to shorten the time and work required to define process design space as
well as to speed the design and scale-up of cost-effective bioreactors desperately needed by the
emerging CM industry.

By interpreting data patterns and shedding light on the underlying phenomena, hybrid models have
the potential to guide the development and optimization of the tools needed for the development and
deployment of CM manufacturing infrastructure and ongoing TEAs. In this way, they can accelerate
their own evolution. Going forward, the number of models in the toolbox may also have to be
expanded as new innovations arise and to fully understand the major cost drivers, including overall
metabolic efficiencies, feed conversion ratios, and waste product generation.

4.2 Choosing the appropriate modeling tool

Computational modeling can serve several needs in designing bioprocesses and evaluating their
economics. However, the model used should depend on the objectives of the practitioner. The model
most appropriate for an engineer designing a novel bioreactor will not be the same as the one used by
a process scientist developing the bioprocess or by a molecular biologist creating a new cell line. The
best model will allow quantitative evaluation of the parameters of interest with sufficient accuracy to
be predictive without resorting to overly burdensome computational and/or theoretical complexity. For
example, modeling can also be applied to the development and optimization of cell culture media that
consist of many components. While not the focus of this review, the latter application can be served
with genome-scale metabolic models and multi-component metabolic flux analyses (Gomez Romero,
Spielmann, and Boyle 2025). However, such a model will likely be too intensive to couple to the
evaluation of bioreactor design or how best to operate it. It is imperative to match the application with
the model of appropriate complexity such that the model serves the application rather than the other
way around.

Types of models

Figure 4.2a depicts the different types of models with respect to both their mathematical complexity
and computational intensity. These model type definitions are well established in the biochemical
engineering field; the reader is encouraged to read published reviews that discuss the multi-scale
aspects of biological systems (Schaffer and Ideker 2021). As an overview, there are empirical models
and mechanistic ones that require an understanding of the underlying principles governing a cell’s
behavior. However, a model can make use of both approaches. In the modeling context, a structured

SF'



model regards a cell as having a distinct boundary and distinguishes intracellular components and
processes from extracellular ones. Actual cell size may or may not be accounted for.

Cell growth model levels of complexity

Segregated structured model

differentiate between individual cells within a population,
considering their different states or ages

“unsegregated” models treat the segregated model

population as homogeneous differentiate between individual cells within a population,
considering their different states or ages

Structured model

accounts for internal components and complexities of a cell

Unstructured models

cell as a simple unit without considering internal details

Increasing computational intensity

“mechanistic” models require
knowledge of first principles

Empirical models

non-mechanistic

Increasing model (mathematical) complexity

Figure 4.2a: Relative mathematical complexity and computational intensity of different biological model types.

Segregated models are less common but are used when there are different cell populations with
respect to one or more characteristics. This is a stochastic approach to account for shifting
distributions of cell phenotypes and even genotypes depending on the application. For more complex
applications, these two model types can be combined. But in general, segregated models are more
complex and use statistical principles, while structured models are less intensive. However, this
depends on how many components are included and whether they are media constituents, internal
metabolites, specific enzymes, and/or cellular compartments.

Empirical models

In simpler applications, empirical models such as the ones reviewed in this study may suffice. A model
may be able to predict the impact on substrate consumption as growth rates vary and/or simulate
responses to the concentrations of a single limiting substrate. It could also be argued that most CM
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applications would strive toward maximum growth rates to generate biomass as quickly as possible.
Thus, modeling growth and metabolic effects at low growth rates may not add much value. However, it
will be important to understand that their application is relevant to a limited set of conditions.

Empirical models require data sets that cover the range of conditions in which they will be deployed.
The model will need to be fit to the data using arbitrary mathematical functions because these
relationships are not founded on first principles. However, some of the relationships outlined in this
report can serve as a starting point for testing model construction and a scaffold for summarizing the
relationships found.

While many of the functional relationships described in this review can certainly be modeled
empirically, the overall model for a bioreactor process will likely become too complex due to the many
interactions involved. Furthermore, circular dependencies representing feedback mechanisms may
lead to computational or numerical instability and may become problematic in terms of ensuring mass
balance closure. Thus, moving toward a more mechanistic approach using structured biological
models may well be preferable to adding non-intuitive complexity to an empirical model.

Structured models

Empirical models cannot predict outcomes if other cellular processes are involved and/or the
conditions are outside the range characterized because they are not mechanistic. Structured models,
on the other hand, can account for some of the cell’s dynamic behavior by separating intracellular and
extracellular substrate or metabolite species. This decouples substrate uptake (usually by active
transport) from substrate utilization. Building an internal reservoir of a certain substrate or metabolite
makes the cell less responsive to external concentrations over shorter time frames. This depiction is
closer to reality because intracellular pools of metabolites can continue to support cellular processes
for a certain amount of time, even though the extracellular environment may have suddenly changed.

Also, where growth limitations can occur with more than one substrate, we have found that the typical
semi-empirical model of a yield coefficient and a maintenance term does not apply. Therefore, where
there are complex feeding strategies and/or trade-offs in raw material consumption, such simpler
models will not be sufficiently predictive. Treating key intermediates, including energy carriers, as a
global species (i.e., as an average concentration across the cell culture milieu) is meaningless unless
presented as a ratio to cell mass or volume concentration. Representing them instead as internal
constituents is more mechanistic and intuitive. An example of an energetically structured model is
presented in Section 4.3.

Metabolic flux models

Metabolic flux analysis, including flux balance analysis, has proliferated extensively over the last 20
years due to the parallel advances in computational power and multivariate algorithms. In essence,
models using these techniques could be classified as structured models since they usually refer to
many intracellular constituents in order to simulate the cell’s internal environment. Because they can
simultaneously represent many parallel reactions, they are well-suited to the design of media that
typically have many components. However, these models are complex, have many parameters, and
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are likely not well suited to couple with a bioreactor model other than the simplest possible
representation. While these types of models were not the emphasis of this review, the reader is
encouraged to leverage the abundant literature on this subject if earlier stage development is the
focus of their work (Quek et al. 2010; Gomez Romero and Boyle 2023; Sacco and Young 2021). A
recent review offers a comprehensive view of the state of the art. The review is focused on CHO as the
workhorse of the biopharmaceutical industry but it can serve as a roadmap for CM process
development (Ranpura et al. 2025).

Segregated and cell memory models

To explore new bioreactor designs and the limits of their performance, the industry needs models that
can account for spatial and/or temporal variations in conditions. An example where a segregated
model may describe a CM application is in cell differentiation, in which cells may be at various discrete
stages (phenotypes) along the way to a terminal state. Another application may be in simulating the
different zones in a bioreactor. As a cell traverses the environs of a very large-scale bioreactor, it will
experience different extracellular conditions and media concentrations. The degree to which cells
react to these changes will influence the bioreactor’s overall productivity. Thus, understanding the
rate of a cell’s response to these changing conditions may be important when simulating such an
environment.

Part of a cell’s transient response to changes in its environment can be represented by structured
models. However, there may be instances where certain conditions have a cumulative effect on a cell.
This response can be viewed as a memory effect and would apply to only those cells exposed.
Accounting for varying populations of cells falls into the segregated model category. How such cell
memory models will be constructed is beyond the scope of this review but there is some precedence
in the literature on microbial systems that could be leveraged (Amirian, Irwin, and Finkel 2022). Also,
the adaptation response of cells to more extreme conditions may require accounting for the genomic
responses to changing environments. These responses may be on a longer time scale but are
important for exploring adaptation strategies to high-waste metabolite concentrations, for example.

Similarly, it may be desirable to understand the impact of various bioreactor design scenarios on
performance. Can less intensive agitation (i.e., longer mixing times) be tolerated without appreciable
deterioration of performance, particularly in light of the potential adverse effects of hydrodynamic
shear on cells? Structured and/or segregated models may be better equipped to predict the effects of
bioreactor scale and design on cell culture processes. These types of models will be further explored
in subsequent work that will address the heterogeneous environments of a large-scale bioreactor.

Hybrid models

There is no limitation as to how or which model types are employed for a given application. Model
types can be combined to address different aspects of the process and/or cell response. Such hybrid
models are not restricted to formal mathematical equations. Combining mechanistic models with Al
algorithms, as mentioned in Section 4.1, offers additional opportunities to represent complex design
spaces as well as guide process scale-up and the determination of scale-relevant parameters.
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However, while structured models combined with Al offer real potential, that potential will only be
realized if models are trained with high-quality data.

4.3 Using structured energetics to model cellular metabolic control

We have seen that a cell’s ATP requirements do not change appreciably over a wide range of
conditions as long as the cells are not under stress. Furthermore, the role of NADH is also important in
explaining metabolic patterns and its complementary role to ATP’s in cellular energetics. A hallmark of
animal cell metabolism is the coordinated consumption of glucose, a carbohydrate, and glutamine, an
amino acid, for both energy production and anabolic processes. The depletion or abundance of one
influences the metabolism of the other. Their relative importance appears to vary with cell type as well
as other factors such as their physical environment, including temperature and pH. From these
observations and careful study of the catabolic pathways, we conclude that a structured model based
on cellular energetics is the most promising for future CM applications.

As a concrete example, we describe the model proposed by DiMasi and Swartz (DiMasi and Swartz
1995). Although such models were first described about 30 years ago, few models have been
developed since that attempt to simplify the mechanisms of mammalian cell growth and metabolism
to be tractable for bioreactor design and simulation without resorting to complex metabolic flux
analyses involving many equations representing tens of metabolic pathways. Batt and Kompala’s
model was adapted from microbial systems modeling and was one of the first to represent glucose
and glutamine as partially substitutable precursors of various pools that comprise the cell mass (Batt
and Kompala 1989). Their model is briefly described in Appendix A3. DiMasi and Swartz built on this
and the Cornell single-cell model (Wu, Ray, and Shuler 1992), where glucose and glutamine are
substitutable precursors and contribute to intracellular metabolite pools. They postulated that only a
model that is structured based on energetics can describe the coordinated substrate utilization and
concomitant oxygen consumption in animal cells, which are of primary interest in designing culture
media and in developing bioreactor technology and feed strategies.

The interested reader is referred to (Dimasi 1992) and (DiMasi and Swartz 1995) for a comprehensive
description of the model’s construction and inherent assumptions, but Figure 4.3a is offered as an
overview of the model’s structure. Instead of using the four main macromolecular precursors (amino
acids, nucleic acids, protein, and lipids) as in Batt and Kompala’s model, they structured their
four-component model on monomer pools, including ATP and NADH. They defined four internal pools
of pseudo-metabolites: (1) precursors associated with the glucolysis of glucose to pyruvate (G), (2)
precursors associated with glutaminolysis of glutamine (Q;), and the energy carriers associated with
(3) ATP cycling (ATP;) and (4) NADH cycling (NADH,). These are pseudo-metabolites because they do
not represent the concentration of a single metabolite but an average of many. For example, ATP;
represents the actions of AMP, ADP, GDP, etc. in addition to fully charged ATP. The low-energy forms of
these carriers are known to also regulate pathways by activation of energy-producing pathways, but to
simplify the model, these interactions are represented by feedback inhibition of a single
pseudo-metabolite (ATP;) instead. Here, the use of ATP, avoids using the adenylate energy charge
described earlier.
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Figure 4.3a: Diagrammatic representation of the Energy Structured model of DiMasi and Swartz
(1994). Solid lines represent a transfer of mass such as transport of a substrate or a reaction.
Dash-dot lines denote energy transfer and the thin dashed lines indicate feedback inhibition on a
reaction.

In the diagram, reaction rates are indicated with the small letter r with a subscript identifying the
pathway. Many of these rate expressions include a Monod—type factor representing the availability of
the reactant. Feedback inhibition, indicated by the dotted lines, is expressed as reverse Monod
expressions using an exponent of 4, similar to those described earlier to simulate a sharper control
action.

Representations for both ATP and NADH were incorporated since they have somewhat different
influences on critical biochemical pathway branch points. For example, the fate of glutamine and its
associated metabolites is very much governed by the relative need for NADH in its reduced
(high-energy) form. The size of each pseudo energy metabolite is governed by its overall production
and consumption. Thus, the rate of change in the ATP,; pool is the difference between its rate of
production either by glycolysis or oxidative phosphorylation and the rate of its consumption,
depending on the cell's energy needs for ATP-requiring processes, as shown by Equation 4.3a.
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Equation 4.3a

Note the consumption term uses the same linear semi-empirical model as discussed earlier, using a
constant yield coefficient and a maintenance term (Pirt 1965). This is justified by the earlier
observations that ATP needs appear to be constant and dependent on these two quantities. The ATP
production term is represented by the true molar yields of ATP from glycolysis and oxidative
phosphorylation, respectively. It is also governed by typical saturation kinetics by virtue of the
expressions for rg and roy that are dependent on the availability of glucose and oxygen, respectively.
The appearance and disappearance of NADH is determined from the known stoichiometric ratios
associated with its production and consumption for each of the major pathways.

In this version of their model, DiMasi and Swartz included branched-chain amino acids independently
from other essential amino acids since they can play a significant role in energy production should the
culture be depleted of the primary carbon and energy sources. These three amino acids (leucine,
isoleucine, and valine) are also essential but are assumed to make up a negligible portion of the total
essential amino acid pool and, therefore, are not subtracted. This is an example of adjustments that
can be made to such a model to make it more sensitive to certain aspects of a process. This version
also includes an inhibitory factor for ammonium using an expression similar to those described in
Sections 2 and 3.

Another example of model adaptability is that the nonessential amino acids are not mathematically
represented in the energy-structured model. Similar to our original assertion, it is assumed that the
nonessential amino acids do not become growth-rate-limiting and are supplied in the medium and
available in excess so that the yields of cell mass on the nonessential amino acids are constant. The
extracellular essential amino acids, on the other hand, are represented as a lumped quantity. If the
nonessential amino acids were not exogenously supplied, but rather derived from the essential amino
acids, a more complicated version of the model, including additional intracellular variables, would be
required, but certainly possible if the study of the contributions of nonessential amino acids to the
overall process PCR is desired.

It remains to be seen whether a model like this, where metabolites are aggregated into pools, will
have sufficient range and predictive power to be of use when coupled to a model of the bioreactor
environment. In his work, DiMasi simulated the extensive data sets from Miller et al. that have been
cited in much of this review, along with data he collected on an entirely different type of cell line. The
model predictions were superior to any others published up to that point and beyond, with the
exception of much larger flux balance models.

4.4 Model development and evolution

The word model is a ubiquitous term because there are many types and applications that can be
brought to bear on the development of CM biomanufacturing. As in the development of any process,
there are multiple stages, each with unique needs and challenges. It will be critical to properly define
each application, though boundaries will be blurred. Analogous to the process development lifecycle,
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the models will follow a similar evolution where one stage will overlap the next in a semi-iterative
manner. What is learned in the prior stage and model will inform the next stage and its model, with the
aim of simplifying and focusing on the most critical aspects for the upcoming stage.

Quiroga-Campano et al. provide a good example of how model building can fit into the bioprocess
development workflow and even serve as an aid to the quality-by-design paradigm in
biopharmaceutical manufacturing (Quiroga-Campano, Panoskaltsis, and Mantalaris 2018). At an early
stage, models design an energy-based model based on ATP homeostasis to characterize the cell line
as Step 1. This feeds into a model designed to assist in media development (Step 2). Step 3 uses a
simplified version of the media development model to guide the design of a fed-batch process, which
is then optimized in Step 4.

Similarly, genome-scale and metabolite flux analyses are used in earlier stages of bioprocess
development, primarily cell line and media development. What is learned at these stages will feed into
the model to support bioprocess development and bioreactor design. Only those metabolites would
be included from the basal medium that would have an interactive effect with other primary
substrates and/or growth processes. In this way, the basal media formulation is an input to this model
rather than an output by virtue of the assumed basal composition supporting a maximum measured
specific growth rate.

We emphasize that the model will need to be adapted to the application, which includes the medium
that is used to grow the cells. However, a key objective for bioprocess and bioreactor design is to make
the model as simple as possible. A key premise of the DiMasi and Swartz model formulation is that
only key nutrients and waste products have a dominant effect on cell growth. Less critical nutrients or
media components that are not inhibitory or don’t result in significant inhibitory by-product formation
can be supplied in excess of the growth requirements, and so these less critical components
essentially behave as if they are at steady state and do not significantly impact culture dynamics.
Using a disaggregated model would involve biochemical reaction measurements that are intractable
or impractical in a dynamic cultivation situation.

As an example of this feature, nucleotide precursors such as hypoxanthine and thymidine have been
shown to increase rates of cell growth and are often included in the medium. In this case, the
maximum specific growth rate and the biomass yields on glucose will reflect the medium’s
composition. If, however, nucleotide precursors are not included, potentially limiting, or otherwise
growth-impactful, the model could be appropriately augmented to include them as separate model
components, but likely with different yield coefficients.

Similarly, if a specific amino acid or alternative substrate is important from the performance-to-cost
perspective, then it may need to be added to the mechanistic portion of the model. For this, its
conversion pathways and energy yield would need to be included. The use of pyruvate as a
supplemental substrate is almost certain to be further explored by CM companies. Pyruvate can be
used as a substrate for ATP generation, allowing for (under the right conditions) glucose to be used for
biomass generation rather than ATP. One of the key anabolic uses of glucose is for upstream
nucleotide synthesis. This is already assumed by the structured energetics model of DiMasi and
Swartz described above because nucleotides making up RNA/DNA are defined and stoichiometric
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components of cell mass. A model for this scenario would include pyruvate as a substrate but
otherwise should not dramatically alter the model’s structure.

Model validation

Finally, at some point, both physical and mathematical models need to be verified and validated.
Larger-scale data are not always available to compare to small-scale results and model outputs until
later in the development lifecycle. However, model confirmation will be an important and necessary
aspect of CM process development under this paradigm to build the necessary confidence that these
tools can be used to design larger, bespoke bioreactor systems. Larger-scale data, when available, do
not need to be from an ideal setup or design, or even a design resembling what will ultimately be built.
It could even be from similar cell lines. Inputting the associated design specifications, cell
characteristics, and process particulars into the model and then comparing predictions with actual
results will foster confidence with these tools, even if the process itself is not optimal or for the
directly relevant application of CM production.
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Section 5. Report summary and calls to action

This review was drawn from over 40 years of animal cell culture literature. Much work was done in the
1980s and 90s at the dawn of recombinant DNA technology and applied to the production of
biopharmaceuticals and vaccines. Our fundamental understanding of animal cell behavior and
metabolism was vastly improved as a result, and much of this experience can be leveraged for the
benefit of CM. In general, we have found that many of the quantitative aspects for growth and
metabolism of animal cells can be materially transferred to CM applications or at least offer a
convenient starting point to model more CM-relevant cell lines.

5.1 Key conclusions

What we have learned from a thorough review of the literature underscores the inherent inefficiencies
of animal cell metabolism with respect to converting substrates into energy and cell mass and the high
energy requirements to support cellular processes compared to microorganisms. The well-recognized
Warburg Effect exacerbates the large substrate demand due to incomplete oxidation, even in the
presence of sufficient oxygen. The possible mechanisms and biological rationale of this effect, some
described in Section 3.6, are still being debated, however, the phenomenon appears to be associated
with higher growth rates (Vander Heiden et al. 2010). This raises the question of whether using animal
cells with wild-type metabolic control and conventional substrates can ever achieve
cost-competitiveness with commoditized conventional meat. As Humbird alluded to in his early but
comprehensive analysis of CM feasibility, modifying (or adapting) cells to enhance their metabolic
efficiency may be a prerequisite for the industrialization of CM.

Secondly, animal cells use more than one energy substrate. The two typical substrates are only
partially substitutable as they provide unique biosynthetic precursors. This fact and the high degree of
coordinated control over their joint metabolism make for a complicated picture. The traditional
semi-empirical models used in biochemical engineering do not apply to dual substrates. Thus, we will
need a higher-level model for our purposes. Fortunately, the energy carriers of most cells, ATP and
NADH, can act as a unifying currency on which to base a model without resorting to very large reaction
networks in silico. While some data are available for proliferating cells, almost none have been
collected for cells undergoing differentiation.

Third, the adaptability of animal cells to adverse conditions appears to be somewhat
underappreciated. It has long been known that animal cells are subject to growth inhibition and death
if suddenly exposed to toxic substances or even their own waste metabolites. However, there are
promising data that cells pre-adapted to otherwise damaging conditions can increase their tolerance.
Due to their evolution toward survival under many possible conditions, we can leverage their plasticity
through the use of alternative substrates, some of which have been successfully used in cell
proliferation. What remains in those cases is to determine whether the cost of the alternative substate,
if more expensive than the typical ones, justifies their use. Our prediction is that they will be justified if
the accumulation of inhibitory waste metabolites can be reduced.

Sﬂ



Lastly, amino acids are also a major component of cell culture media and contribute to the overall cost.
While a detailed review of their metabolism was not a focus of this work, the inclusion of some of the
essential and/or nonessential amino acids in a model may be needed in certain applications. Certainly,
they should be included in the material balance as a pool because their uptake contributes
significantly to overall biomass production in most cell culture media. However, incorporating specific
amino acids into the equations to account for variable substrate consumption will add to model
complexity. If specific amino acids are particularly expensive like serine and histidine, contribute to
metabolic shifts, or can partially substitute for others, the added complexity may be worthwhile.

Harnessing all the above knowledge through the use of mathematical models, we assert, will focus
attention on the aspects of a process that are most influential on performance and cost. Moreover,
combining a cell model with a physics-based bioreactor model will enable quantitative assessments of
trade-offs between competing phenomena such that an optimum balance can be identified. Even
indirectly, models can help point out strategies that will have a meaningful impact on overall
economics. For example, knowledge of the key aspects of metabolism limiting a given cell line’s
growth can suggest targets for genetic modifications in addition to the more immediate mitigations
such as substrate restriction or substitution.
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5.2 Overview of gaps and recommendations to modelers

This work was undertaken to help fulfill the vision presented above by identifying a starting point and highlighting gaps. In light of current
and future needs, Table 5.2a reflects on the same six proposed model functions outlined in Section 2 in terms of what remains to be done
to make modeling a useful reality for CM. A predominant theme that runs throughout the gaps is the need for further characterization of
cellular energetics and high-flux biochemical pathways toward our main recommendation of building an energetically structured model.
More data are needed to understand quantitatively how energy pathways are controlled to maintain high growth rates and how cell
maintenance requirements may shift depending on stress conditions. In addition to the transformational work by Hefzi et al. on
engineering out the Warburg Effect of a CHO cell line, similar work on CM-relevant cell lines is needed to benefit economical biomass
production (Hefzi et al. 2025).

Modeling needs Current limitations, challenges, and actions needed

1. | Prediction of bioreactor performance. e More characterization of CM-relevant cell lines and measurement of key model parameters

] ) . needed, including cellular biomass content.
e Calculation of volumetric productivity
. e Standardized quantification of bioreactor performance, including volumetric productivity in
e Accounting for: . .

terms of biomass and/or key nutritional components needed.

o Controlled growth conditions e Current TEMs assume binary thresholds for inhibitors that can not be exceeded. In reality,

o Availability of oxygen, primary carbon, there is an optimum to be found that pushes on the boundaries of mixing homogeneity and
energy, and nitrogen substrates exposure to toxic metabolites.

o Accumulation of inhibitory waste e Most metabolite inhibition studies used sudden additions of test metabolites to cells not
metabolites previously exposed, which is not representative of typical culture process dynamics. More

data are needed on the effect on cells after prolonged exposure to lactate and ammonia

o Impact on the formation rate of since it is apparent that they can adapt to these adverse conditions.

inhibitory metabolites.
e Related to the previous point, few detailed inhibition data are available from perfusion or

other continuous culture systems on these metabolites, and even less for dissolved carbon
dioxide and elevated osmolality.

e Identification of factors restricting a
bioreactor's performance envelope

e Relating system productivity to both
capital and operating costs for

e There are almost no data on the rates of cell death of CM-relevant cell lines due to various
stressors. Similar to inhibition studies, exposure was immediate, resulting in the highest
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Modeling needs

determining and comparing
performance-to-cost ratios

Current limitations, challenges, and actions needed

death rates, which is not representative of cell culture conditions.

2. | Optimization of bioreactor feeding
strategies and operating modes

e With respect to raw material costs and
bioreactor performance

e Accurate prediction of performance,
substrate consumption efficiency, and
feed conversion ratios as a function of
the rate and timing of substrate addition

e Evaluation of the quantitative trade-offs
between the cost of medium
components and their relative
contribution to overall productivity

Greater understanding is needed of the factors leading to the metabolic shift from lactate
production to lactate consumption for CM-relevant cell lines.

Current TEMs use a single apparent yield for each substrate. This static stoichiometry is an
oversimplification since substrate consumption depends on their residual concentrations and
their metabolic interactions with each other.

Minimally variable yields should be determined as a function of their concentrations under
representative conditions. A structured model based on energetics where substrate fluxes
can be deduced could better serve this need. This requires more measurement of energy
(e.g., ATP) yields for each substrate under a range of conditions.

Maintenance terms should also be used and measured as a function of the same conditions
and in the presence of various concentrations of inhibiting metabolites.

Additional amino acids may need to be included in the mechanistic portion of the model,
depending on the media design and their relative cost.

The specific metabolism for differentiating cells is largely unexplored, including for the
substrates preferred and their corresponding growth yields (and feed conversion ratios).

Data from studies of substrate deprivation (including oxygen) are highly variable, probably
due to many other conditions and/or nutrient concentrations not being controlled. Death
kinetics will be important for CM processes consisting of two stages. If cells are proliferated
(expanded in number) in the first stage, only live cells will appropriately attach and mature in
the second stage.
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Modeling needs

Enabling bioreactor design and design
evaluations

e Thorough capture of the effects of
heterogeneous conditions on overall
performance, such as insufficient
mixing, oxygen transfer, or control
overshoot

e Estimate impact of:

o Localized depletion of substrates,
including oxygen

o Concentration gradients or transients

o Other potential non-idealities
inherent in large bioreactor systems.

Current limitations, challenges, and actions needed

All models to date assume well-mixed ideal conditions where the concentrations of
substrates and metabolites are the same everywhere in the bioreactor. This will likely not be
the case in large-scale bioreactors.

Few data have the time resolution to inform such models. Concentration fluctuations are
likely to occur on the order of minutes to seconds — possibly less.

Cellular responses may need to be measured on this timescale. Single events are unlikely to
have a measurable effect; however, intermittent or oscillating conditions may indeed have an
effect over time. This could be simulated at small scale using an appropriately designed
physical scale-down model of a large-scale bioreactor.

Structured models are likely required to account for these effects through the representation
of internal metabolite pools such that intracellular concentrations are not immediately
affected by an external change.

Such structured models will also likely need to be based on energetics since depletion of
energy reserves or an increase in maintenance as a result of stressors would help predict
some of these transient responses.

Current models are woefully inadequate for simulating differentiation stage bioreactors. Very
little quantitative information is available on the rate at which specific cell types differentiate,
their associated mass gain, or compositional changes.

Improving and optimizing bioprocesses

e Models should support study of
performance trade-offs between various
physical and biochemical conditions.

e Ideally, include temperature and pH on
overall system performance in addition
to substrate feeding strategies and

Data are needed for the effects of temperature and pH on the growth, differentiation, and
metabolism of CM-relevant cells. This knowledge will enable the assessment of trade-offs
with physical parameters in the bioreactor, potentially leading to more optimized cell culture
processes at large scale. It is quite possible that an overall process optimum exists that does
not necessarily coincide with the temperature and pH that maximizes growth rate for a given
cell line.

Characterization of CM-relevant cell lines should include the impact of these key variables at
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Modeling needs

operating modes.

Current limitations, challenges, and actions needed

least over a limited range around the growth rate optimum.

The addition of these parameters to a biological model will add another level of complexity
since each of the mathematical expressions used to represent control of metabolic pathways
and flux will also have to be a function of temperature and or pH. Fitting these relationships
will likely require complex empirical functions since several factors are likely involved with
changes in these key process variables.

Similar to Function #2, other amino acids may need to be included in the mechanistic portion
of the model if they interact appreciably with the primary substrates and/or contribute
significantly to cost.

Evaluation of cellular adaptation strategies

Time-based adaptation to inhibitory
metabolites

Comparison to pre-adapted cell lines

Use of alternative substrates such as

pyruvate and alpha-ketoglutarate and
their impact on performance-to- cost
ratio

Model must be adaptable to incorporate
other pathways

The phenomenon of lactate uptake needs characterization for CM-relevant cell lines. This has
significant implications for both the control of growth inhibition by lactate and the efficiency
of substrate energy conversions.

While some semi-empirical models exist that provide excellent simulation of the relative
consumption of conventional animal cell substrates, they are not intuitive or mechanistic
enough to allow easy reconfiguration for other potential substrates.

By understanding how alternative substrates are metabolized, particularly with respect to
energy generation, internal energy yield coefficients can be adjusted in a straightforward and
intuitive manner.

The change in waste metabolite yields should also be quantifiable based on the known
catabolism of the alternative substrate.

A time component may need to be added to the model to account for adaptive responses.

More study of the adaptation mechanisms is needed, along with time-resolved
measurements.
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Modeling needs

Predicting the quantitative benefit of
altered biochemical pathways

e asaresult of adaptation
e and/or genetic manipulation.

e This benefit would be in the context of
large-scale bioreactor operation.

Current limitations, challenges, and actions needed

Much of such cell line improvement work would first be done in more sophisticated biological
models, such as comprehensive metabolic flux analyses, to understand the consequences on
cellular processes and flux distribution.

Various pathways and/or feedback mechanisms would be blocked or bypassed in silico
simply by modifying their mathematical representations.

Once understood, the proposed simplified model would be adjusted to account for the
salient effects of the biological modification and inserted into the larger bioreactor model.

This is where a model needs to be sufficiently mechanistic such that it is clear how to modify
the equations to represent an altered pathway.

Table 5.2a: Outstanding gaps and needs for each of the desired modeling functions outlined in Section 2.
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5.3 Model parameter determination and recommendations to
experimentalists

To leverage models, CM production needs a systematic approach to obtaining the necessary
mathematical parameters. With greater diligence in how experiments are conducted, manufacturers
can make more progress in both process technology and fundamental understanding. Many of the
same approaches used by previous researchers studying biopharma-relevant cell lines, as described
earlier in this review, can now be followed for CM-relevant cells with the above caveats. Not only does
a model provide a method of performance prediction, its framework also organizes causes and effects,
highlights influential parameters, suggests the types of experiments needed to measure these
parameters in the model, and provides a quantitative and structured summary of results. Moving
forward, several priorities are clear. The following list offers some more specific recommendations
regarding parameter measurement.

1. Normalization of cell growth and bioreactor productivity data to dry cell weight. This
removes the variables of cell size and moisture content. Too much of cell culture research and
current modeling still rely on cell number, despite the fact that biomass is what ultimately
defines output and cost. Experiments, even with the same cell line, should be tracked by dry
mass since it varies with growth rate and conditions. Moreover, data can be compared between
cell lines with the potential that some results are transferable. Thus, accurate mass-based
measurements of biomass and product yields must become standard practice. Methods using
computationally enhanced quantitative phase microscopy (ceQPM) to populations of
proliferating cells show much promise, as it enables highly accurate measurement of cell dry
mass throughout the cell cycle ((Liu, Yan, and Kirschner 2022)).

2. The chemostat as a measurement tool. Maintaining culture conditions long enough to get a
reliable measurement is a challenge with batch-like cell cultivations. Substrate concentrations
can change rapidly under exponential growth, metabolites accumulate, and growth rates do
not remain constant. By contrast, using continuous culture in which measurements can be
made at a steady state removes the urgency and immediacy of sampling from non-steady state
systems. Even the study of transient responses can be well supported with a chemostat by
perturbing the system and then tracking deviations from steady state conditions. This
recommendation is not to be confused with scale-down modeling. Rather, the chemostat is a
tool for measuring biological parameters, even though it may not be the operating mode
intended for the final process.

3. Use of physical scale-down models. There is still a fundamental disconnect between
small-scale experiments and large-scale needs. Without designing experiments that reflect the
conditions at commercial scale, it will be difficult to scale up these processes and generate
results that will translate to performance and cost at scale. However, not all parameter
measurements need to be made in a scaled-down version of the final bioreactor process. This
only pertains to scale-relevant parameters. For isolated scale-dependent parameters, a
specialized physical model might be designed to simulate a singular effect. For example, the



exposure of cells to a rapidly oscillating condition, such as a substrate (e.g., oxygen),
metabolite concentration, or shear-rate distributions to simulate larger-scale heterogeneity
could be conducted at small scale with an appropriately designed culture system. However,
whenever possible, a cultivation system should be used that is as close to the final bioreactor
and bioprocess design as possible. This includes the use of media, including serum
concentrations, representative of the final process.

Focus on cellular energy metabolism, yields, and maintenance requirements. Based on
what we have reviewed, much of the cell’s response to changing conditions has ramifications
for its energy status or balance. This is why we have recommended using energetics as the
underlying structure for a model. Thus, even if culture attributes like growth rate and
metabolite concentrations are measured, energy yields and maintenance requirements should
also be measured when possible. There is likely a correlation between them and more will be
learned about how to model the studied effects in terms of energy metabolism. For example, it
is highly likely that the inhibitory effects of both lactate and ammonium on cell growth rate
manifest by increasing the energy demand on the cells, taking it away from supporting growth.

Measurement of cellular bioenergetics. To support the previous recommendation,
measurements of energy-related parameters are challenging in real time due to the rapid
changes that can occur even in a sample withdrawn from a steady state culture. ATP and NADH
yields have historically been inferred from oxygen uptake and lactate formation rates using
conventional oxygen sensors in a bioreactor. This method, while practical, is not conducive for
small-scale cultures used in high-throughput investigations. Using equipment like Agilent’s
Seahorse Bioanalyser (Desousa et al. 2023; Yoo et al. 2024) and Oroboro’s 02k (Walsh et al.
2023; Gnaiger 2020) will give much better resolution of substrate and oxygen use on small
samples. Indeed, the recent seminal work by (Hefzi et al. 2025) used the Seahorse analyzer for
some of its measurements of lactate production. Also relevant to CM, others used the same
instrument to measure oxygen consumption rates in muscle stem cells (Hong and
Munoz-Canoves 2023). There are also more methods of measuring the total intracellular ATP
content rather than ATP production rates using fluorescent or bioluminescent-based assays
(Ley-Ngardigal and Bertolin 2021).

Time-resolved measurements. The bioprocess development scientist should be cognizant of
the appropriate timescale relevant to the parameter or situation being studied. The latency of
cellular responses to short timescale changes in nutrient availability (particularly oxygen) will
be important for simulating bioreactor environments. Experiments should then be designed
with a representative timescale and samples collected at a corresponding frequency. For
example, in metabolite inhibition studies, we have seen the resulting cell response change with
the duration of exposure. Sudden additions of test metabolites to cells not previously exposed
lead to the most dramatic effects and are not representative of typical culture dynamics, even
in a batch mode. Looking at adaptation kinetics is almost impossible with batch-like
experiments with rapidly changing conditions, even if the test metabolite is held constant. This
is further support for using chemostat cultures as a study tool (see #2 above).


https://www.agilent.com/en/product/cell-analysis/real-time-cell-metabolic-analysis/xf-analyzers
https://www.oroboros.at/index.php/products/

7. Use of comprehensive analytical tools. Modern tools such as metabolomics should be used
to collect as much information as possible from time-consuming cell culture experiments. With
the availability of advanced analytical methods, it is often an insignificant investment in time
and expense compared to the labor-intensive culture work. As we have learned, amino acids
are inextricably linked to key catabolic and anabolic pathways and may have interactive effects
with the primary substrates that may otherwise not have been predicted. Amino acids are
typically assayed as a panel, so in measuring one, the others might as well also be measured.
Going one step further, submitting results to metabolomic software to identify operative
pathways would be a valuable extension of work.

5.4 Implications for CM Process Development

While modeling will support and guide process development going forward, aspects learned during
this review already point toward process recommendations. Below, we attempt to collect the relevant
findings and what implications they have for first-generation CM manufacturing process technologies.

The advantages of continuous cultivation

We have seen how substrates are consumed is dictated by their own concentrations and by the
concentrations of their accumulated catabolic products. The amount of substrates consumed has a
direct impact on the formation of these autoinhibitory waste metabolites. Therefore, the manner in
which the substrates are fed to the bioreactor can significantly impact the growth rates and maximal
cell concentrations achieved. From the biopharmaceutical world, it is well known that in fed-batch
cultures, a controlled feed of glucose and glutamine that maintains low residual concentrations leads
to significantly higher bioreactor productivities for cell mass and recombinant protein product yields.

Even though batch and fed-batch processes have been the staple method in the biopharmaceutical
industry for many years, continuous cell culture seems well suited to CM manufacturing (Laura Pasitka
et al. 2024). With greater scales required and lower cost margins, efficiency will be paramount. Just as
importantly, the need to restrict the residual concentrations of the primary energy substrates is most
easily accommodated by a continuously fed bioreactor. An actively growing culture at steady state will
inherently keep residual substrate concentrations down as fresh medium is fed into the bioreactor as
long as the substrate(s) is growth-limiting.

To achieve the high cell concentrations that are targeted to maximize bioreactor productivity,
perfusion cell culture is possibly the only option. Perfusion consists of a nutrient medium being fed to
the culture while the spent medium is removed from the culture and while the cells are held in the
bioreactor. The cells are held in place by means of a cell retention device, which permits the washout
of inhibitory substances without losing the cells from the reactor. A perfusion medium should be
properly tuned to balance nutrient delivery with waste and inhibitor removal and culture osmolality.
While a perfusion system will almost certainly be required for stationary cultures to produce
tissue-like CM, perfusion should also be applied to the preceding proliferation step for the same
reason. However, a different cell retention device may be required for a suspension culture than for a
fixed bed using a scaffold.
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Perhaps an even bigger advantage of continuous culture is from the observation that cells can adapt to
inhibitory levels of metabolites if given enough time. In batch and fed-batch cultures, waste
metabolites accumulate over a relatively short amount of time and while many other conditions are
also changing, ending in a death phase. A continuous culture, on the other hand, maintains the same
conditions over an indefinite period of time. This feature allows the cells to adapt, thereby reducing
their sensitivities and possibly shifting their metabolism in a favorable direction, such as the reuptake
of lactate.

Lastly, among the most critical parameters, temperature and pH have not been fully explored as
means of process optimization. Examining the trade-offs between biological parameters and physical
processes that occur in the bioreactor, including mass transfer, gas dispersion, and viscosity, may offer
unique opportunities for overall bioprocess performance improvements.

Mitigation of waste metabolite inhibition

Prior researchers aimed to reduce lactate and ammonium buildup in CHO cells and compiled themin a
summary table ((Freund and Croughan 2018)). They found that strategies such as nutrient
replacement, amino acid modulation, media reformulation, and adaptation protocols were all
employed with varying success. Such strategies have not been completely characterized and are sure
to be of use in CM applications. Strategies to mitigate ammonia toxicity include glutamine substitution
or reduction and the use of alternative nitrogen sources (e.g., alanine, glutamate, or dipeptides) as
methods not requiring genetic intervention. Physical approaches such as dialysis-based perfusion,
two-compartment reactors, and membrane-based ammonia extraction have also been investigated
(Van EikerenJohn M. Radovich 1990). More recently, co-culture systems involving recombinant
cyanobacteria capable of ammonia uptake and assimilation have shown promise in improving media
quality and supporting long-term mammalian cell proliferation (Chu et al. 2024; Haraguchi et al.
2024).

Alternative substrates

As suggested by the literature, the use of substrates that are intermediates of glycolysis and the TCA
cycle can generate energy equivalent to or approaching that of the native carbon, energy, and nitrogen
sources while also avoiding the excessive discharge of inhibiting waste metabolites like lactate and
ammonium. In fact, a few industry stakeholders have already explored the use of pyruvate as a partial
substitute for glucose or the use of alpha-ketoglutarate as a substitute for glutamine (Hubalek et al.
2023). It remains to be seen if these strategies can improve the overall PCR of CM processes but such
analyses and comparisons can be supported using mathematical models.

5.5 Implications for cell line development

Similar to the recommendations for cell culture process development offered in the preceding section,
our review of the literature has also made apparent some early recommendations for the development
of new cell lines for CM. Achieving some of the performance improvements already mentioned may be
best accomplished by direct modification of wild-type metabolism. As alluded to in the summary
above, the adaptability and flexibility of natural animal cell metabolism come at the expense of
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substrate consumption efficiency. This trait might pose extensive economic challenges for CM if
wild-type cells are used. However, genetic engineering approaches have already proven effective. For
example, genetic modifications aimed at upregulating pyruvate carboxylase or downregulating LDH-A
have shown promise in reducing lactate formation and improving culture longevity. The main challenge
with this approach may be nontechnical: seeking regulatory approvals for the use of genetically
modified organisms in the production of human food. Currently, there are parts of the world that are
not ready to accept this approach.

As progress continues to be made in understanding the Warburg Effect, which appears to be
characteristic of all animal cell lines, not just transformed ones, additional strategies for genetic
engineering will reveal themselves. The recent work of (Hefzi et al. 2025) the energy efficiency of
animal cells. Their approach to knock out both LDH and pyruvate dehydrogenase succeeded in
eliminating lactate production, forcing more oxidation of glucose without reducing growth rates. This
approach focuses on the most immediate level of metabolic control. However, recent discoveries
indicate the involvement of mitochondria as part of the Warburg phenomenon, suggesting additional
possible strategies for more efficient cell lines.

The potential use of alternative substrates was mentioned in the previous section. If the biochemical
is a natural metabolite that can be utilized by a wild-type cell, no genetic modification is necessary.
However, non-natural substrates could be conceived and may offer some advantages. While this
approach may have negative implications for a food product, it should be given some consideration at
least for potential substrates that are considered food safe (i.e., GRAS designated).

Other less invasive approaches are also possible by pre-adaptation of cell lines before banking them
for use in the actual production process. What remains is to acquire the data to evaluate the
quantitative benefit of such strategies coupled with modelling to assess cost-benefit and other
performance trade-offs.
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Appendices

A1l. Overview of animal cell metabolism

The energy required for animal cell growth is naturally provided by the catabolism of carbon and
energy substrates, glucose, a sugar, and glutamine, an amino acid. Under conditions of rapid growth,
glycolysis is the primary contributor to energy production from the consumption of glucose, resulting
in the production of lactic acid. Glycolysis occurs even though the greatest energy is produced via
oxidative phosphorylation through the TCA cycle, ending in the formation of carbon dioxide. This
phenomenon is known as the Warburg Effect, which occurs even if oxygen is available in excess.
Glucose also has an anabolic role in contributing 5-carbon sugars (pentoses) to the synthesis of
nucleotides.

Glutamine is typically the main contributor to the nitrogenous base of nucleotides and to the synthesis
of nonessential amino acids and protein synthesis more generally, but can also be consumed as an
energy substrate, resulting in the release of free ammonia. It is well established that glucose and
glutamine are partially substitutable as energy sources in mammalian cell culture media (DiMasi and
Swartz 1995). Each provides unique biosynthetic precursors but is complementary for the production
of other metabolites and energy (Miller, Wilke, and Blanch 1989). Thus, glycolysis and glutaminolysis
are jointly regulated to provide sufficient energy required by cells, depending on the availability of
these major energy substrates (Jeong and Wang 1995).

The rate of glucose and glutamine consumption directly determines the production rates of their main
waste products of lactic acid, ammonium, and carbon dioxide. It is also well established that all three
of these metabolites can inhibit the growth of most animal cells and can even result in cell death at
higher concentrations.
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Figure Al1.1: Overview of primary pathways that have the greatest flux during active cell growth. Thus,
concentrations of the substrates and metabolites shown change to the greatest extent during batch growth.

The role of energetics in the control of metabolism is best explained by examining the actual
biochemical pathways involved. A detailed diagram of the relevant biochemical pathways is provided
in Figure A1.2, showing the enzymes that catalyze each reaction step in glycolysis, glutaminolysis,
and the TCA cycle. The most critical regulatory enzymes, typically located at the start or end of each
pathway, are colored in red in the diagram. These enzymes are allosterically regulated by the
concentrations of energy carrier molecules. Regulation at these points allows the cell to commit to or
bypass entire pathways depending on the demand for the end products, particularly the energy
carriers produced through these pathways.
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Figure A1.2: Diagram of catabolic pathways, including the enzymes that catalyze each reaction. The key enzyme
control points are shown in red for each of the primary pathways: glycolysis, glutaminolysis, and the TCA cycle.

Together, these pathways reveal how animal cells flexibly regulate substrate use based on the demand
for ATP, redox balance, and biosynthesis. Glucose mainly supports ATP and NADH generation through
glycolysis, while glutamine feeds the TCA cycle to supply biosynthetic precursors (anaplerosis) and
support redox homeostasis. The balance of glucose and glutamine determines how much pyruvate is
oxidized versus reduced to lactate. When glucose is abundant but glutamine is limited, the TCA cycle
lacks sufficient anaplerotic input, and pyruvate is diverted to lactate production to regenerate NAD".
This leads to a high lactate-to-glucose yield (Y’ ..ai0), Often approaching or exceeding 1.5 mol/mol.
When glutamine is sufficient, it supports TCA activity and biosynthesis, allowing more pyruvate to be
oxidized and lowering lactate output. In this way, lactate production reflects a broader metabolic

strategy shaped by nutrient availability and the cell’s energy and biosynthetic needs.
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When ATP demand is high and oxygen is available, glucose can be fully oxidized. But in rapidly dividing
cells, glycolysis often dominates even in the presence of oxygen. This is known as the Warburg Effect,
leading to lactate accumulation, and which appears to be a characteristic of most animal cells,
including the ones we have evaluated. Animal cells generally have a higher maintenance energy
requirement than microorganisms, but energy generation is exacerbated by the Warburg Effect, which
further increases substrate demand due to incomplete oxidation. However, a key finding during this
review is that cells of very different lineages appear to adjust their utilization of metabolic pathways to
maintain a constant g even under varying nutrient conditions. Thus, using a fixed energy demand
provides a unifying currency on which to base mathematical models of substrate utilization.

Though discovered over 100 years ago in cancer cell lines, the Warburg phenomenon still perplexes
scientists. The mechanisms and biological rationale of this effect are still being unraveled; however,
considerably more is known today than 10 years ago. The leading hypothesis for its origin is that it
allows cells to grow more quickly. It is therefore no longer surprising that the effect was first
discovered in cancer cells, which grow more quickly than the surrounding normal cells.

It is now understood that many normal cell types display this same phenomenon, possibly as a
strategy to boost growth or counteract stresses. Several explanations have been offered. Glucose
uptake is increased significantly in part because it is also an important contributor to nucleotide
synthesis. By supplying the ribose portion, nucleotides can be assembled, more of which are required
under conditions of rapid proliferation. However, much of the glucose is also wasted (energetically
speaking) by being converted to lactate. Another explanation is that for cells to recruit oxidative
phosphorylation at high growth rates for their growth energy needs, they would need to invest
significantly in the construction of mitochondria. This investment may not be worth the expenditure
(Bouchez et al. 2020; Martins Pinto et al. 2023).

Also, the use of mitochondria requires active transport systems to shuttle key metabolites between
the mitochondrial millieux and the cytoplasm. The aspartate-malate shuttle is a key example and may
not be compatible with high growth rates. Since glycolysis is a cytoplasmic process, it may be faster
and be able to provide energy in the form of ATP, albeit less efficiently, and maintain redox balance by
the reduction of NAD by means of the energy-rich pyruvate to lactate enzymatic conversion. As a
consequence, it is possible that mitochondrial expression can be down-regulated under conditions of
high growth rate and/or when glucose is available in excess.

The pathways diagram also reveals that amino acids are intimately tied to this network of
energy-producing reactions. It was noted in Section 3.5 that certain amino acids were either
consumed or produced depending on which primary substrate was most available. The fate of many
amino acids can be deduced from the cell’s need for energy relative to its needs for biosynthetic
precursors. Table Al.a reflects the control points associated with the TCA cycle intermediates leading
to the synthesis or consumption of groups of structurally related amino acids. The common essential
amino acids cannot be synthesized by most animal cells but can be used for anaplerotic purposes. The
nonessential amino acids can also enter the TCA cycle through certain branch points or be synthesized
by withdrawing the appropriate precursors. The removal of these intermediates is essentially the
opposite of anaplerosis, known as cateplerosis.
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Table A1.1: Control points associated with the TCA cycle intermediates.

TCA Cycle-associated Intermediates

(Branch points)

Nonessential Amino Acids

(Consumption or Synthesis)

Essential Amino Acids

(Consumption Only)

Alanine .
. Threonine
Pyruvate Cysteine Trvotonhan
(via Acetyl-CoA or Oxaloacetate) Glycine yp p'
. Threonine
Serine
Leucine
Acetyl-CoA Lysine
. y (none) y
(via Acetoacetate) Tryptophan
Tyrosine
Arganine
alpha-Keto Glutarate Glutamine Histidine
Proline
Isoleucine
. Methionine
Succinyl-CoA (none) .
Threonine
Valine
Fumarate Aspartate Phenylalanine
Aspartate
Oxaloacetatae P . (none)
Asparagine

Glutamate
(Amine group donor)

Glutamine and by
transamination to all other
nonessential amino acids

(can be deaminated)

A2. Additional models for cell growth, substrate consumption, and

metabolite production

Over the past four decades, several models have been proposed to address metabolic dynamics that
go beyond the semi-empirical model (Equation 2.4g) based on Pirt (1965). Since then, it has been
found that structured models are better able to capture these dynamics in general, but they increase
model complexity significantly. One of the first such models distinguishes between intracellular and
extracellular substrate concentrations (Batt and Kompala 1989). To simplify the metabolic
transformations, four intracellular component pools were included in the model: amino acids,
including TCA cycle precursors (A), nucleotides, including DNA and RNA (N), proteins (P), and lipids
(F). The model was structured such that it accounted for specific pools of metabolites within the cell.
The sum of these lumped metabolite pools represents the total dry mass of the cell. Thus, the total
rate of their increase is equal to the growth rate in mass units.
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The synthesis rates of the internal pools are functions of the extracellular substrate concentrations of
glucose (G) and glutamine (Q), as the only potentially limiting substrates. For example, Equation A2a
represents the total rate of change of the internal concentration amino acid pool with terms for the
individual synthesis and consumption of pool A.

_ max * max * max * _ _ _ _
r, = kAG NFG IFA+ kAQ NFQ IFA +kAAe NFAE IFAE a,,r,=—a,r. —a.r, uA

Equation A2a
Where:
® T,y = Rates of synthesis of the internal pools, A, N, P, and F, respectively

o K™us, K™%0 K™ ne K™ e = Maximum amino acid synthesis rates from glucose (G),
glutamine (Q), and external amino acid concentration (Ae)

e NF;, NF, ,NF,. = Nutrition factors for the contributions of G, Q, and Ae to the synthesis of
amino acids

® Qa,p,a, ax = Stoichiometric coefficients for the production of pools P, N, and F from the pool
(A) of amino acids

The final term (uA) represents the dilution of the internal pool A due to expansion of the growing
cells. When this system of equations was applied to the data from Miller et al., a reasonable fit was
achieved for both batch and continuous culture modes.

As an improvement to the four-component model of (Batt and Kompala 1989; DiMasi and Swartz
1995) built a structured model also with four intracellular components, but not the macromolecular
precursors and cellular constituents. They included the internal concentration of glucose (G),
glutamine (Q,), pseudo-metabolites ATPi and NADH, representing the intracellular pools of energy
carriers associated with ADP/ATP cycling and NAD/NADH cycling. Two energy metabolites were
incorporated because they exert somewhat different influences on the critical biochemical pathway
branch points; for instance, pyruvate can either be shunted to lactate or be used for other purposes.
As an example of the model construction, Equation 2.4i represents the overall oxidation rate of NADH
based on the availability of dissolved oxygen and reduced NADH, but inhibited by the end product
ATP. The rate of change in the ATPi pool is then the difference in the rate of its production either by
glycolysis or oxidative phosphorylation and the rate of its consumption, depending on the cell's
energy needs for ATP-requiring processes (Equation 2.4j).

max 02 NADHi 1 .
r =k - - Equation A2b
ox NADH [ KOZ + 02 ] [ KNADHL' + NADHi ][ 14+ (ATPi/KATpi) ]
Production Consumption
Tare = Tare Tarp N [2 e+ 2(P/0) Tox] [Il Vire & Moarp

Equation A2c

Where:



e r, = Total oxidation of NADHi in the cell by means of oxidative phosphorylation needed to
produce ATP

o Kywui = Monod-type saturation parameter depending on the availability of NADHi

Note the consumption term uses the same linear consumption model as already shown in Equation
2.4h. ATP production is modeled with typical saturation kinetics. DiMasi and Swartz also applied their
model to the data from (Miller, Wilke, and Blanch 1988) and were able to demonstrate a superior fit of
the data.

Another model proposed by (Zeng and Deckwer 1995) does not directly invoke cellular energy
requirements. Building off an earlier model developed for microorganisms growing on multiple
limiting substrates, they applied it to the dual substrates for animal cells (glucose and glutamine).
Instead, it suggests that the specific consumption rate is made up of a minimum amount, as if the
substrate were limiting cell growth, and an additional amount associated with the degree to which
the substrate is in excess of this amount. However, if another substrate is available in excess, it will
influence the uptake of the first. Thus, in the case of glucose, there is an additional term in the
expression for the excess metabolism.

E Glc Gln .
Ao = 4 *Glc tq ., = 4 *Glc + (Aquc + Aquc) Equation A2d

Where:

® (g = Totalspecific consumption rate of glucose

e g*y. = Minimum specific consumption rate of glucose under substrate-limiting conditions

e g, = Additional specific consumption rate of glucose associated with the excess availability
of substrates, in this case, glucose and glutamine.

e Ag®,. = Additional specific consumption rate of glucose due to excess of glucose

o AQ™. Additional specific consumption rate of glucose due to excess of glutamine

The first term describing consumption under substrate limitation can be described with the (Pirt
1965) linear model presented above, which includes a maintenance quantity representing the
absolute minimum consumption to maintain cell viability.

* _ max .
q e = (”/Y(;lc ) + m. Equation A2e

c

Where:
® (g = Totalspecific consumption rate of glucose

e Y™, = Maximum biomass yield of glucose (minimum consumption) under substrate-limiting
conditions
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e mg. = Maintenance requirement for glucose

The terms describing the excess metabolism use a Monod-type saturation model.

Glc Glc(max) AGlc Glc(max) Glc — Glc* :
Glc Glc AGlc + K Gle (Gle —GlcH) + K
Glc Glc
Gln Gln(max) AGIn Glc(max) Gln — Gln* .
q = A _— = A ( ) T Equation A2g
Glc Glc AGIn+ K Gle (Gln— GIn*) + K
Glc Glc
Where:

o AQEMm™ . = Maximum additional specific consumption rate of glucose due to excess of
glucose

e AGlc = Differential glucose concentration between the limiting concentration and the actual
concentration in the extracellular medium

e K¢, = Half-saturation constant associated with additional consumption of glucose due to
the excess glucose

e Glc* = Concentration of glucose at which it becomes limiting.

Equation A2g represents the cross-over influence of glutamine on the consumption of glucose. The
consumption model for glutamine is analogous to the above equation set for glucose. A term for the
cross-over influence of excess glucose on glutamine consumption can be included if glucose does
affect glutamine metabolism. Using this model, Zheng and Deckwer (1995) were able to predict
glucose and glutamine consumption rates over a wide variety of animal cell culture data.

In general, the more complex the model, the more parameters are required. These parameters then
need to be determined from experimental data, requiring a significantly greater investment in
laboratory-based work and model construction. The challenge then remains to build a model that will
adequately simulate the cell culture process to be of value in assessing bioreactor performance while
minimizing the effort.
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A3. Detailed effects of lactate and ammonium on cell metabolism

As further evidence of the complexity of metabolic interactions, it has been shown that the main
end-products of glucose and glutamine catabolism, namely lactate and ammonia, have a feedback
effect on the cells’ metabolic quotients. Several studies have measured the response of various cell
types when exposed to elevated levels of these waste metabolites.

Figure A3.1 illustrates the effect of lactate concentration on both glucose- and glutamine-specific
consumption rates. A few studies looked at concentrations as high as 68 mM. Despite this large range,
the impact on both substrates was relatively mild. However, the trend appears to depend on the cell
line, but most probably on other differences in the media and conditions used in the studies.
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Figure A3.1: Effect of lactate concentration on glucose- and glutamine-specific consumption rates. Solid lines
show glucose response and dashed lines show glutamine.

The impact on glutamine uptake was negligible, while glucose consumption increased for a hybridoma
cell line but slightly decreased for a CHO cell line. Figure A3.2, on the other hand, shows a very strong
effect of lactate concentration on its molar yield from glucose. The trend is distinctly negative for all
three cell lines included, a clear sign of feedback inhibition of lactate on its own production through
glycolysis.
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Figure A3.2: Effect of lactate concentration on the lactate yield on glucose.

The trend in Figure A3.3, showing the impact of lactate on the molar yield of ammonia produced on
the glutamine consumed, is less clear. There appears to be a gentle downward trend with increasing
lactate concentration, suggesting that less glutamine is needed for energy if glucose is being used
more efficiently. The data with trend lines associated with them were from continuous culture
experiments, while the data on the BHK cells were derived from a batch culture with many more
factors changing at the same time.
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Figure A3.3: Effect of lactate concentration on the molar yield of ammonia on glutamine consumed.

In addition to studying the effect of lactate on steady-state metabolic quotients, Miller et al. also
studied the impact of sudden changes in lactate concentration (Miller, Wilke, and Blanch 1988). For
this, they subjected a chemostat culture at steady state to pulse and step changes of lactate
concentration. Figure A3.4 shows the culture’s response to a pulse of lactate when its concentration
was suddenly increased from the steady state level of 25 mM to 44 mM by spiking the culture with a
concentrated solution of sodium lactate. Catabolic end-product formation rates were traced as the
excess lactate was slowly washed out of the bioreactor.
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Figure A3.4: Response of a murine hybridoma cell line to a pulse change in lactate concentration. The time
courses included are for ammonium concentration, and lactate-, ammonium-, and alanine-specific production
rates.

Immediately after the pulse, there was a slight decrease in cell concentration, which might be
expected due to the inhibitory effect that lactate (and osmolality) can have on growth rate. The
specific consumption rates of glucose and glutamine did not change appreciably, while there was a
modest increase in oxygen uptake and a decline in the specific lactate formation rate, again suggesting
feedback inhibition of the elevated lactate concentration on glycolysis. Much more pronounced was
the rapid change in the formation rates of glutamine’s main catabolic end products, ammonium and
the amino acid alanine. There was an immediate drop in the specific production rates of both
metabolites, followed by a rebound within hours of the pulse. Alanine, another by-product of
catabolism, was also tracked. Its specific production rate returned to its pre-pulse level within roughly
8 hours; however, ammonium production did not return to its original level for days post-pulse,
remaining about 15% below its prior rate. The authors suggest that more of the glutamine was
oxidized after the pulse, presumably to make up for the decrease in energy derived from glycolysis.

As pointed out in Section 3.4 regarding waste metabolite inhibition on cell growth, cells are able to
adapt to prolonged exposure to these same metabolites. The above lactate pulse experiment was
clearly an acute and sudden exposure. However, cell lines adapted to higher lactate concentrations
showed a dramatic reduction in the buildup of this metabolite. For lactate-adapted CHO cells, Freund
and Croughan showed that the corresponding lactate yield per glucose (Y ,.qi) could be reduced to
approximately 0.39 (Freund and Croughan 2018). In contrast, osmotically adapted CHO cells
maintained the higher Y ... 0f 1.41. Moreover, the lactate-adapted CHO cells not only produced less
lactate but also showed improved tolerance to high extracellular concentrations, and even evidence of
lactate reuptake during the later stages of culture. The result was higher cell concentrations and
culture productivity, and about an 8-fold reduction in base addition to maintain pH. Interestingly,
ammonia production was also suppressed.
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Metabolic Influence of Ammonia Accumulation

The accumulation of ammonium in culture influences metabolic fluxes to a similar degree as lactate,
albeit at significantly lower concentrations. This difference is likely related to the same reasons
ammonium has a greater inhibitory effect on cell growth, particularly when the exposure is acute.
Figure A3.5 shows the impact of ammonium concentration on the specific consumption rates of both
glucose and glutamine. Unlike lactate, the impact on glutamine uptake is more pronounced; however,
the trend is different for the cell lines included. Glutamine uptake is unchanged with a CHO cell line
and increases with a hybridoma.
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Figure A3.5: Effect of ammonium concentration on the specific consumption rates of glucose and glutamine.
The solid lines show the suggested relationship for glucose and the dotted lines for glutamine.

Cruz et al. observed that in BHK cultures, the interplay between lactate and ammonium is highly
dynamic (Figure A3.6). They observed the shift from lactate production to reuptake, discussed in the
lactate section, occurred in parallel with decreasing ammonium levels, supporting the view that
coordinated regulation of both metabolites is central to achieving high cell density and productivity
(Cruz et al. 2000). Like Freund and Croughan for lactate-adapted CHO cell lines, Cruz et al. also
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observed a reduction in specific ammonia production rates, indicating that metabolic engineering or
selective pressure can reduce ammonium output while maintaining productivity.
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Figure A3.6: Effect of ammonium on the molar yield of lactate from glucose

In terms of glucose consumption, all three cell lines show an increase with increasing ammonium
concentrations, but at different slopes. The hybridoma is the most sensitive and the CHO is relatively
unaffected. The specific glucose consumption is dramatically lower for an aquatic species than for the
other three lines, possibly due to the lower growth temperature and the consumption of other
substrates. Not surprisingly, increased ammonia concentrations have a feedback effect on the
metabolite’s own formation, shifting glutamine metabolism toward alanine production. In the study by
Ozturk et al., ammonia levels as low as 4 mM halved the growth rate of hybridoma cells and triggered
metabolic shifts that included decreased glutamine-to-ammonia conversion and increased alanine
production (Ozturk, Riley, and Palsson 1992). Figure A3.7 shows the impact of ammonium on the
total yield of ammonia as a ratio to glutamine consumption for some other cell lines. All show a
decline in ammonium yields with increasing ammonium concentration.
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Figure A3.7: Effect of ammonium concentration on the molar yield of ammonia from glutamine.

Using the same methodology explained above for lactate, Miller et al. also studied the impact of
sudden changes in ammonium concentration on metabolic yields. After subjecting a chemostat
culture to a pulse of ammonium, a similar set of substrate consumption and metabolite production
profiles, with the exception of alanine, was observed as the spiked ammonium washed out of the
continuous bioreactor. Whereas both ammonium and alanine dropped precipitously immediately after
the pulse of lactate, alanine did the opposite when the culture was spiked with ammonium. Its
production increased rapidly at first and then declined back to its steady state value as the excess
ammonium was removed. These transient dynamics underscore the interconnected control of
catabolism. In this case, the higher ammonium concentration inhibited the pathway to its own
formation, pushing the excess amine moieties towards alanine instead.
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	●​Thus, the impact of temperature (and pH) on specific growth rates should be understood so that biomass productivity can be optimized along with other physical conditions in a bioreactor. For example, lower temperatures can increase membrane rigidity and increase resistance to certain culture conditions (Al-Fageeh and Smales 2006). 
	●​Limited data exist for the effect of temperature on the growth rate of CM-relevant cell lines. Researchers can repeat experiments by Watanabe and Okada and use the linearized form of the Arrhenius equation (Section 2.3) to describe the relationship. 

	Effect of pH on specific growth rate 
	Key takeaways and data gaps   
	●​Like temperature, optimal pH in a bioreactor process is not necessarily the pH corresponding to the one supporting the maximum rate of growth at tissue culture scale. 
	●​Thus, the impact of pH (and temperature) on specific growth rates should be understood so that biomass productivity can be optimized along with other physical conditions in a bioreactor. 
	●​Selecting an optimal pH for a bioreactor process is a challenge due to the many biological and physical parameters it can interact with. 
	●​Mathematically modeling changes in pH in a cell culture is especially difficult because of the complex buffering dynamics of multiple medium components. 

	Differentiation kinetics and mass gain 
	Mass gain during differentiation 
	Estimating upper bounds for mass gain during differentiation 
	Key takeaways and data gaps   
	●​More differentiation data are needed from relevant species and cells (e.g., muscle, fat, and extracellular matrix accumulation from fibroblasts) to understand the extent of mass gain that can be achieved under different conditions. There is a dearth of quantitative data, even from in vivo physiology, to help guide CM processes. 
	●​Special attention should be paid to protein and lipid compositional changes during differentiation, as these will have a significant bearing on the nutritional value of CM. 
	●​The accumulation of protein mass in skeletal muscle differentiation could be modeled using saturation kinetics (e.g., Equations 3.3a and 3.3b).  
	●​Repeatable and standardized methods for calculating mass gain during differentiation will be essential to ensuring values can be compared across studies.  
	●​More work is also needed to understand what factors are likely to limit cell differentiation in vitro and whether kinetic relationships (e.g., Monod growth-saturation constants) from suspension cultures are relevant. 

	Effects of substrate concentrations on cell growth and death rates 
	Oxygen 
	Key takeaways and data gaps   
	●​Monod growth rate saturation kinetic constants for oxygen (KO2) values were found to be well below 0.01 mM. According to the function fit to the data in Figure 3.3e, KO2 is exceedingly low (below one hundredth of a micromole), suggesting animal cells are highly efficient at extracting oxygen from their environment. 
	●​Growth inhibition can occur in both hypoxic and hyperoxic states and can be modeled using Equation 3.3c. The optimal oxygen concentration for animal cell growth appears to be in the range of 5-20% of air saturation 
	●​More data on oxygen’s effects on growth and death rates are needed for CM-relevant cell lines. Data from aquatic animal cell cultures will be particularly important, as environmental differences in oxygen concentrations and temperature may impact oxygen kinetics in cultivated seafood.  

	Glucose 
	Key takeaways and data gaps   
	●​Monod growth rate saturation kinetic constants for glucose (KGlc) values were found to vary over two orders of magnitude, falling between 0.02 to 5 mM. This high variability can be explained by media components, culture conditions, and measurement techniques, as well as cell type differences. 
	●​More data on glucose effects on growth and death rates are needed from CM-relevant cell lines grown in relevant bioreactor conditions and in relation to other substrate concentrations, such as glutamine. Also, if a metabolite like pyruvate is added to provide some of the cell’s energy needs, growth kinetics are likely to be affected if any of the substrates become limiting. 

	Glutamine 
	Key takeaways and data gaps   
	●​Monod growth rate saturation kinetic constants for glutamine (KGln) values are more consistent in the literature compared to glucose. A reasonable consensus for KGln values lies between 0.1-0.5 mM for batch systems with serum and probably higher in continuous systems and/or in serum-free media. 
	●​Two-parameter models can be used to fit death rate kinetics for glutamine. Both a linear relationship and an inverse Monod (Equation 2.3l) provide a reasonable fit for initial modeling purposes. 
	●​However, such kinetic parameters need to be measured for CM-relevant cell lines and in conjunction with the availability of other amino acids and possibly other intermediate metabolites if added to the medium (e.g., alpha-ketoglutarate). 


	Summary: Effects of substrate concentrations on cell growth and death rates 

	3.4 Kinetics of metabolite-induced growth inhibition and cytotoxic death  
	Inhibition effects of lactate 
	Key takeaways and data gaps   
	●​A two-parameter model is best used to describe lactate inhibition on cell growth, with IC50 values varying between 10-80 mM. On average, for the cell lines where data were reported, the IC50 and IC100 are approximately 40 mM and 73 mM, respectively.  
	●​Taking only the three studies that corrected for osmolality, these averages for IC50 and IC100 move up to 67 and 84 mM, respectively, suggesting that sensitivity to lactate is overestimated in many studies. 
	●​More dose-response data are needed on lactate inhibition and cytotoxicity under serum-free conditions, especially for cell lines relevant to CM production. 
	●​Future growth inhibition studies should compare gradual accumulation of lactate with acute lactate addition. 
	●​Exploring metabolic engineering and cell feeding strategies to promote lactate consumption could improve culture performance and cell yields. 

	Inhibition effects of ammonia 
	Key takeaways and data gaps   
	●​A two-parameter model for substrate inhibition can sometimes be used to describe ammonia inhibition on cell growth, with IC50 values between 3-8 mM. 
	●​More dose-response data are needed on ammonia inhibition and cytotoxicity under serum-free conditions, especially for cell lines relevant to cultivated meat production. 
	●​Future studies should pay special attention to pH when interpreting results. 
	●​Future studies should examine gradual adaptation to ammonia as well as continued methods to remove or limit ammonia production. 

	Effects of osmolality 
	Key takeaways and data gaps   
	●​The osmolality effect on growth rate was linear, with inhibition observed as osmolality increased.  
	●​An IC50 of 465 mOsm/kg was estimated across studies.  
	●​More data are needed to determine osmolality tolerance across cell types and species for CM production. These studies should distinguish between osmotic stress and metabolite-specific toxicity, especially as it relates to lactate.  
	●​Understanding the effects of gradual osmolality shifts vs. sudden changes can inform optimal feeding strategies that limit growth inhibition.  

	Effects of dissolved carbon dioxide 
	Key takeaways and data gaps   
	●​An IC50 of 6.3 mM was estimated for dCO2, however, more studies are needed to define dCO₂ tolerance levels in CM-relevant cell lines. 
	●​Researchers should control for pCO₂, pH, and osmolality independently to distinguish their effects, as exemplified in (Zhu et al. 2005) 
	●​Larger-scale bioreactor studies are needed to assess the combined impacts of dCO₂ and osmolality on culture performance. 

	Summary of metabolite inhibition 

	3.5 Stoichiometry of cell growth, substrate consumption, and metabolite production 
	Methodology for estimating yield factors 
	Stoichiometry of oxygen metabolism 
	Oxygen consumption and growth rate 
	Key takeaways and data gaps   
	●​Very low DO levels, below ~0.5% air saturation (<0.001 mM), represent a metabolic transition zone where cells switch from oxidative phosphorylation to glycolysis, resulting in significant increases in specific glucose and glutamine uptake rates and subsequent lactate and ammonia formation. This low threshold indicates the efficiency at which aerobic organisms can sequester oxygen, but DO should be kept well above this threshold. 
	●​However, very high DO levels are also not optimal, apparently due to the toxicity of oxygen. The optimal range of DO lies between 1 and 10% air saturation. 
	●​Limited data exist for the relationship between oxygen consumption and cell growth rate, as oxygen consumption, historically, has been challenging to measure accurately. A true yield coefficient of 2.9 gDCW/g O2 (FCR = 0.34 g O2/gDCW) was determined as an initial estimate. However, newer methods are available and should be leveraged for CM development. See Section 5.3 for recommendations. 
	●​Due to its low solubility, oxygen transfer is a likely limiting factor for bioreactor productivity. Since the impact of oxygen deprivation on cell viability (death rates) appears to be cell line dependent, more studies of CM-relevant cell lines are needed, including the timescale of the response.  


	Stoichiometry of glucose metabolism and lactic acid production 
	Maintenance requirement for glucose 
	 
	 
	Factors affecting glucose consumption rate 
	​​Lactate formation and yields on glucose 
	Key takeaways and data gaps   
	●​The average apparent biomass yield for glucose (Y’X/Glc) across all cell types and conditions collected is approximately 0.461 gDCW/gGlc + 40%. This range in yield is equivalent to a feed conversion ratio (FCR) for glucose roughly spanning 1.6 to 3.6 g Glc/g DCW.  
	●​Restricting glucose below 1 mM can lead to dramatically increased biomass yields for this key substrate and consequently decreased lactate production. Maintaining low residual glucose concentrations is best achieved with continuous or highly controlled fed-batch cell culture modes, which could decrease glucose’s contribution to media costs and may improve bioreactor performance.  
	●​The Warburg Effect can be engineered or at least partially mitigated. Practitioners should build on methods developed in the pharmaceutical sector to reduce lactate:glucose ratios toward 0.5 by shifting cells toward more energy-efficient oxidative metabolism.  
	●​In general, the data for glucose consumption and maintenance requirements were scattered, highlighting the flexibility of metabolism under different conditions and the need for controlled experiments to be conducted in CM-relevant cell lines. Data on glucose consumption during differentiation were largely absent, highlighting a gap that CM researchers can investigate. 
	●​The lack of a clear maintenance requirement is at odds with the known dependency on glucose for the synthesis of nucleic acids for ribose. However, this may be a small demand compared to total energy production and may be obscured if nucleotide precursors are included in the medium.  


	 
	Stoichiometry of glutamine metabolism and ammonia production 
	Maintenance requirement for glutamine 
	Ammonia formation and yields on glutamine 
	Factors affecting glutamine consumption rate 
	Key takeaways and data gaps   
	●​The average biomass yield for glutamine is about 1.98 gDCW/gGln + 23%. This yield range corresponds to an FCR from 0.4 to 0.65 g Gln /gDCW, which is roughly 3-5 times less than that for glucose. 
	●​No clear maintenance requirement could be established for glutamine, likely due to the fact that glucose and glutamine are partially substitutable energy substrates and that other amino acids can serve as energy or nitrogen sources. 
	●​Restricting glutamine below ~0.3 mM can lead to dramatically increased biomass yields on glutamine. Leveraging this in manufacturing could potentially decrease glutamine’s contribution to media costs.  
	●​Lactate formation is strongly influenced by residual glutamine concentration as well as glucose. This helps explain the high degree of variability in biomass yields on the two substrates from various studies.  
	●​Spontaneous degradation of glutamine is a function of temperature and pH, and should be mitigated in manufacturing and accounted for in metabolic studies. 


	Stoichiometry of carbon dioxide (CO2) production 
	Key takeaways and data gaps   
	●​The CO2 released by oxidation is proportional to oxygen consumption. The RQ, which is the ratio between the cell-specific CER and the specific OUR, is typically between 0.9 and 1.2. 
	●​The online measurement of CER and RQ using off-gas analyzers is to be encouraged but should be interpreted along with the other primary metabolites to gain a complete picture of metabolism in real time. 
	●​It is unclear if the presence of CO2 has a significant effect on the stoichiometry of catabolism but some is likely due to its disruption of pH gradients within and around the cells. 

	Metabolic influence of lactate and ammonia accumulation 
	The influences of other amino acids on metabolism  

	3.6 Energy metabolism and the role of energy carriers 
	ATP metabolism 
	NADH Metabolism 
	Key takeaways and data gaps   
	●​The total ATP required to support cell growth is remarkably consistent between cell types under normal conditions when normalized to dry biomass — approximately 8 gDCW/mol ATP consumed. 
	●​A maintenance requirement is evident and thus its ATP’s consumption conforms to the semi-empirical model of (Pirt 1965). 
	●​NADH production is not as consistent stoichiometrically and varies with growth rate and the availability of substrates.  
	●​The molar yield of NADH from the consumed glutamine can range from zero to over 8, but tends toward 6 under optimal oxygen concentrations and higher growth rates, indicating that most of the glutamine is fully oxidized. 
	●​The molar ratio of ATP produced to NADH produced can also vary above 3, but also trends toward its theoretical value of three at high growth rates and when sufficient oxygen is present. 

	Influence of pH on energy metabolism 
	Key takeaways and data gaps   
	●​pH can cause a marked shift in the amount of energy derived from glycolysis compared to oxidative phosphorylation, where the latter is favored by lower pH. 
	●​The impact of pH on energy production is likely related to its impact on proton gradients in the cell and underlies the inhibitory effects of lactate and ammonia. 
	●​Due to these interactions, pH may be an important optimization parameter for future CM processes. The effects of pH and these inhibitors on cellular maintenance requirements should be further studied. 

	Cellular response to sudden changes in substrate concentrations 
	Sudden transition to growth-limiting oxygen concentrations (0.4% to 0.1% air saturation) 
	Sudden transition to non-growth-limiting oxygen concentrations (0.1% to 10% air saturation) 
	Key takeaways and data gaps   
	●​The above works by Miller et al. (1988 and 1989) are good examples of how the dynamic control of metabolism can be determined in real time.  
	●​More experimentation like this, with greater time resolution, is needed to give a more accurate determination of response times.  
	●​Such studies can give important clues to how cells may behave in a bioreactor with heterogeneous conditions, as well as provide meaningful insight into the dynamics of cellular metabolism. 
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