

Plant-based meat: Anticipating 2030 production requirements

Prepared by The Good Food Institute 2022

Acknowledgements

Report authors

- Maria Troya
- Husain Kurawadwala
- Blake Byrne
- Ryan Dowdy (corresponding author)
- Zak Weston

Contributors

- GFI: Liz Specht, Erin Rees Clayton, Siddharth Bhide, and Priera Panescu
- Industry experts: Norm Sammons, Mark Langley, Graham Markham, Natarajan Padmanabhan, Dan Northrup, and Dave Reynolds

The Good Food Institute

GFI is a 501(c)(3)nonprofit developing the roadmap for a sustainable, secure, and just protein supply. We focus on three key areas of work:

Science and Technology

Advancing foundational, open-access research in alternative proteins and creating a thriving research and training ecosystem around these game-changing fields.

Corporate Engagement

Partnering with companies and investors across the globe to drive investment, accelerate innovation, and scale the supply chain—all faster than market forces alone would allow.

Policy

Advocating for fair policy and public research funding for alternative proteins.

GFI officially earned GuideStar's 2019 and 2020 Platinum Seal of Transparency—obtained by less than 1% of nonprofits—reflecting our commitment to maximum impact, efficiency, and inclusion. We work as a force multiplier, bringing the expertise of our departments to the rest of the world.

100+ staff in 6 regions

Companies estimate the global alternative protein market may be as large as \$1T by 2050.

Source: GFI analysis

Significant shifts in protein consumption have happened before

Source: UN Food and Agricultural Organization (FAO) OurWorldInData.org/meat-production • CC BY Note: Total meat production includes both commercial and farm slaughter. Data are given in terms of dressed carcass weight, excluding offal and slaughter fats.

Estimates for alternative protein's share of the global meat market

Hypothetical production scenario: 6% market share requiring 25 MMT production

25 MMT

This production model uses a hypothetical production scenario set in **2030**, where plant-based meat has captured **6% of the global meat and seafood market**, necessitating the production of **25 million metric tons (MMT)** of plant-based meat **annually**.

Source: GFI analysis. This analysis is based on a hypothetical scenario that assumes 6% market share for plant-based meat in 2030 with annual production of 25 million metric tons (MMT). This production figure is not GFI's forecast of future demand. The analysis is benchmarked to estimates from third-party market research groups and is intended to provide directionally predictive insights that illustrate the supply chain innovation and investment required to hit commonly-cited production targets.

Illustrative plant-based meat production supply chain

Source: GFI analysis. This analysis is based on a hypothetical scenario that assumes 6% market share for plant-based meat in 2030 with annual production of 25 million metric tons (MMT). This production figure is not GFI's forecast of future demand. The analysis is benchmarked to estimates from third-party market research groups and is intended to provide directionally predictive insights that illustrate the supply chain innovation and investment required to hit commonly-cited production targets.

Key assumptions and analysis limitations

- Among other variables, our model is sensitive to:
 - Forecasted demand growth rate
 - Current volumetric production estimates
 - The species and end product formats of plant-based meat and seafood produced
 - The usage levels of different ingredients in plant-based meat formulations
 - Projected production of global crops and ingredients
 - Production facility utilization rates
 - The balance of production methods used (e.g., high- vs. low-moisture extrusion)
 - Relative mix of small and large production facilities
- We conservatively assume that there will not be major innovation breakthroughs in crop breeding, protein fractionation, or plant protein structuring technologies such as extrusion or fiber spinning, even though we strongly believe that innovations are likely in these areas with sufficient investment in R&D from the public and private sectors. More detail on report simplifications, assumptions, and potential sources of error can be found in the report in Tables 1 and 6.
- This report should be considered a living document, subject to frequent revision, updates, and more sophisticated modeling as new information becomes available. The results presented here should not be interpreted as an authoritative prediction but rather a working model for providing directional guidance based on future crop, ingredient, infrastructure, and investment demands for the plant-based meat industry.
- Data on key variables like costs, production facility capacity, and process efficiency are often proprietary and hard to obtain. We welcome any countervailing data and/or feedback since it will help us improve the model!

Key findings: Ingredient and facility constraints

There is a looming potential for **global supply squeezes of cornerstone ingredients**, like coconut oil and pea protein, in the coming years.

There are also clear opportunities for the industry to proactively **mitigate these supply strains**.

We conservatively estimate that the industry will need to **operate at least 800 manufacturing facilities** at a **global capital cost of at least \$27B** within the decade in order to satiate even modest consumer demand growth for plant-based meat.

This underscores the importance and urgency of **incentivizing bold infrastructure investments** to facilitate this transition.

9fi

Source: GFI analysis. This analysis is based on a hypothetical scenario that assumes 6% market share for plant-based meat in 2030 with annual production of 25 million metric tons (MMT). This production figure is not GFI's forecast of future demand. The analysis is benchmarked to estimates from third-party market research groups and is intended to provide directionally predictive insights that illustrate the supply chain innovation and investment required to hit commonly-cited production targets.

Facility footprint and investment needs at industrial scale

Structured plant protein (SPP) manufacturing approaches

- V1.0 (traditional processes): Products like <u>seitan are produced</u> in a reasonably simple manner, by
 kneading a dough of wheat flour, yeast, and water. Traditional meat analogs like seitan have been produced
 for centuries, but they bear minimal organoleptic resemblance to conventional meat.
- V2.0 (low-moisture extrudates): Since the 1960s, <u>low-moisture extrusion</u> has been used to produce textured vegetable protein in the form of <u>strips, crumbles, and flakes</u>. Plant-based meat manufacturers use this shelf-stable, low-moisture extrudate (LME) to produce comminuted products like sausages, burgers, and meatballs. Plant proteins processed using LME are also widely used as extenders in the conventional meat sector.
- V3.0 (high-moisture extrudates): The 2000s saw the advent of high-moisture extrudates (HME) produced via twin-screw extrusion lines. This approach, which today is not as widely utilized in the plant-based meat industry, more convincingly replicates the taste and texture of conventional meat.
- V4.0 (next-generation techniques): There are now efforts by researchers, manufacturers, and entrepreneurs to expand the reach of plant-based meat production methods to further optimize for texture and taste. Researchers and companies are developing novel alternatives to extrusion including <u>shear cell</u> <u>technology</u>, <u>3D printing</u>, <u>spinning technology</u>, and other <u>novel manufacturing approaches</u>.

The report's estimations of the industry's SPP manufacturing needs in 2030 assume LME accounts for 80% of the global SPP volume and HME accounts for 20% of the global SPP volume

Four archetypal extrusion lines were modeled for this analysis—two LME lines and two HME lines

- Line 1: LME (throughput: 1,000 kg/hr). Ingredient suppliers and plant-based meat manufacturers operate extrusion lines at this capacity today in small- to medium-scale facilities.
- Line 2: LME (throughput: 2,500 kg/hr). Extrusion lines of this capacity are often located in large-scale facilities operated by ingredient suppliers who sell their SPP to plant-based meat manufacturers. This scale represents the upper bounds of SPP throughput based on today's manufacturing technologies.
- Line 3: HME (throughput: 500 kg/hr). Due to the limitations that cooling dies impose on the HME production process, 500kg/hr has been the maximum throughput achieved at industrial scale until very recently.
- Line 4: HME (throughput: 1,000 kg/hr). The current market leading cooling die for HME is capable of 1,000kg/hr. It is highly likely that other industrial equipment manufacturers will soon follow suit.

Source: GFI analysis. This analysis is based on a hypothetical scenario that assumes 6% market share for plant-based meat in 2030 with annual production of 25 million metric tons (MMT). This production figure is not GFI's forecast of future demand. The analysis is benchmarked to estimates from third-party market research groups and is intended to provide directionally predictive insights that illustrate the supply chain innovation and investment required to hit commonly-cited production targets.

Estimated global extrusion line and extrusion facility quantities

Global production volume assumptions	Facility A	Facility B	Facility C	Facility D
Туре	Medium LME	Large LME	Medium HME	Large HME
Extrusion lines per facility (#)	1	4	2	10
Annual output per facility (MMT)	0.007	0.07	0.007	0.07
Share of global SPP production (%)	12	68	3	17
Extrusion facilities (#)	413	234	104	59

Source: GFI analysis. This analysis is based on a hypothetical scenario that assumes 6% market share for plant-based meat in 2030 with annual production of 25 million metric tons (MMT). This production figure is not GFI's forecast of future demand. The analysis is benchmarked to estimates from third-party market research groups and is intended to provide directionally predictive insights that illustrate the supply chain innovation and investment required to hit commonly-cited production targets.

Estimated capital expenditure per facility for generalized hypothetical SPP extrusion facilities

Facility CapEx components (\$M)	Facility A	Facility B	Facility C	Facility D
Туре	Med LME	Large LME	Med HME	Large HME
Land acquisition	0.3	1.0	0.3	1.2
Extrusion lines	2.0	16.0	4.9	36.0
Facility development	10.5	43.2	13.1	54.0
Total CapEx (\$M)	12.7	60.2	18.2	91.2

Source: GFI analysis. This analysis is based on a hypothetical scenario that assumes 6% market share for plant-based meat in 2030 with annual production of 25 million metric tons (MMT). This production figure is not GFI's forecast of future demand. The analysis is benchmarked to estimates from third-party market research groups and is intended to provide directionally predictive insights that illustrate the supply chain innovation and investment required to hit commonly-cited production targets.

Generalized hypothetical extrusion facility operating expenditures

Facility operating cost components (\$M annually)	Facility A	Facility B	Facility C	Facility D
Туре	Medium LME	Large LME	Medium HME	Large HME
Utility: water	<0.1	<0.1	<0.1	<0.1
Utility: electricity	0.3	1.8	0.9	4.4
Raw materials	4.2	21.0	10.2	51.3
Labor	6.1	11.0	6.1	11.0
Miscellaneous	2.2	4.9	2.5	6.6
Total annual operating costs (\$M)	12.8	38.7	19.7	73.4

Source: GFI analysis. This analysis is based on a hypothetical scenario that assumes 6% market share for plant-based meat in 2030 with annual production of 25 million metric tons (MMT). This production figure is not GFI's forecast of future demand. The analysis is benchmarked to estimates from third-party market research groups and is intended to provide directionally predictive insights that illustrate the supply chain innovation and investment required to hit commonly-cited production targets.

Estimated cumulative global capital expenditure in structured plant protein extrusion facilities by 2030

Source: GFI analysis. This analysis is based on a hypothetical scenario that assumes 6% market share for plant-based meat in 2030 with annual production of 25 million metric tons (MMT). This production figure is not GFI's forecast of future demand. The analysis is benchmarked to estimates from third-party market research groups and is intended to provide directionally predictive insights that illustrate the supply chain innovation and investment required to hit commonly-cited production targets.

Clean energy investment grew 7x from 2004 to 2019, from \$40B to \$282B, a 14% CAGR over 20 years despite high CapEx

New investment in clean energy worldwide

Total values include estimates for undisclosed deals Source: UNEP, Frankfurt School-UNEP Centre, BloombergNEF

Alternative protein investment (mostly VC equity deals) has grown rapidly – 47.6% CAGR over past 6 years – but this is only a fraction of what is needed for future growth

Annual investment in alternative protein companies

^{2010 - 3}Q 2021

Source: GFI analysis of PitchBook Data, Inc. Invested capital includes accelerator and incubator funding, angel funding, seed funding, equity and product crowdfunding, early-stage venture capital, late-stage venture capital, private equity growth/expansion, capitalization, corporate venture, joint venture, convertible debt, and general debt completed deals. Note: Data has not been reviewed by PitchBook analysts.

Under-investment in alternative proteins as a climate technology solution

Percent of global GHG emissions¹

Invested capital²

Through December 31, 2020

¹ U.S. Environmental Protection Agency (EPA), Food and Agriculture Organization of the United Nations FAO). ² Source: GFI analysis of PitchBook Data, Inc. Invested capital includes accelerator and incubator funding, angel funding, seed funding, equity and product crowdfunding, early-stage venture capital, late-stage venture capital, private equity growth/expansion, capitalization, corporate venture, joint venture, convertible debt, and general debt completed deals. Note: Data has not been reviewed by PitchBook analysts.

We need to establish alternative proteins as a bankable and investable green asset class every bit as impactful, profitable, and sizeable as renewable energy

Solutions to overcome scaling barriers

- **Expanding capacity at existing facilities**. Today, there are thousands of facilities that process various packaged foods using extrusion and related technologies. It is reasonable to expect that plant-based meat manufacturers can purchase and upfit existing facilities instead of constructing entirely new factories.
- **Production equipment innovation**. Investment in production equipment research and development would not only support likely improvements in product quality but could also ease capacity constraints if resulting innovations allowed for higher throughput and better utilization of existing and new production facilities without significantly increasing costs.
- **Partnerships and other commercial strategies**. Partnerships between ingredient companies and equipment manufacturers, such as a recent collaboration between Givaudan and Buhler on a manufacturing innovation center, can significantly accelerate R&D and commercialization timelines of novel manufacturing approaches.
- **Near-term investments in capacity expansion**. Production capacity for plant-based meat does not appear overnight. On the contrary, it often takes many years to conceive, finance, and construct an SPP processing facility. Financiers and ingredient processors seeking to expand their footprint in the rapidly growing plant-based meat industry should begin planning and investing now to meet the industry's ambitious production targets for this decade and beyond.
- **Private capital:** This need for greater capacity and infrastructure, including to manufacture plant-based meat end products, will require substantial capital from financiers like banks, PE funds, and institutional investors, not just early-stage VCs.
- **Public investment:** When blended with private sector funding, public funding can incentivize bold supply chain innovations and capacity-building, enabling the alternative protein sector to grow as fast as consumer demand does

Find additional white space ideas and solution ideas at gfi.org/solutions

Discover ideas for new startups, commercial ventures and products, research projects, ecosystem support, and investment opportunities for plant-based, cultivated, and fermentation-derived proteins.

Industry

Good Food Institute

 \equiv

Ingredient needs at industrial scale

Key ingredients present in the top 75 plant-based meat products

Share of products in each category that contain the respective ingredient for the eight most common ingredients, 2020

Key ingredient	Burgers, meatballs, and grounds	Sausage links and patties	Nuggets, tenders, and cutlets
Soy protein concentrate	48%	36%	40%
Soy protein isolate	40%	48%	64%
Wheat gluten	48%	72%	76%
Pea protein*	32%	32%	20%
Coconut oil	40%	28%	-
Canola oil	76%	44%	19%
Sunflower oil	40%	36%	40%
Cocoa butter	12%	-	

Without market transformation, the plant-based meat industry will continue to rely heavily on a select group of **well-established, commoditized ingredients.** Supply chains for **novel plant proteins** and **lipids** are currently **underdeveloped**, and difficult and costly to build.

Archetypal plant-based meat formulations used in this analysis

Wheat/Soy-based (62% or 16 MMT)	Pea-based (16% or 4 MMT)
Water, soy protein concentrate , wheat gluten . Less than 2% of salt, methylcellulose, corn oil, onion powder, garlic powder, caramel color, yeast extract, malt extract, natural flavor, spices.	Water, pea protein , expeller-pressed canola oil , refined coconut oil , rice protein, natural flavors, cocoa butter , mung bean protein, methylcellulose, potato starch, apple extract, pomegranate extract, salt, potassium chloride, vinegar, lemon juice concentrate, sunflower lecithin, beet juice extract.
Soy-based (14% or 3 MMT)	Chickpea/Pea-based (8% or 2 MMT)
Water, soy protein concentrate , coconut oil , sunflower oil , natural flavors. Less than 2% of potato protein, methylcellulose, yeast extract, cultured dextrose, food starch modified, soy leghemoglobin, salt, mixed tocopherols, soy protein isolate , vitamins, and minerals.	Water, textured pulse protein (chickpea flour and pea protein), sunflower oil , chickpea flour, coconut oil , porcini mushrooms, sea salt, vegan Worcestershire sauce, black pepper, garlic powder.

Data and methods: FAO commodity projections and industry ingredient production data

2030 projections

Projected ingredient demand

Share of projected global ingredient production

Share of projected global raw commodity production

Different ingredients may require different types of production scale-up

Share of projected global ingredient production

If

is high percentage

Expanding intermediate processing will be sufficient (e.g., protein isolate or concentrate production)

Different ingredients may require different types of production scale-up

Different ingredients may require different types of production scale-up

Ingredient	Projected Demand (MMT)	Share of Projected Global Ingredient Production	Share of Projected Global Raw Commodity Production
Soy protein concentrate	2.43	3х	Soy: 2%
Soy protein isolate	0.01	1%	
Wheat gluten	1.48	98%	Wheat: 2%
Pea protein	0.74	10x	Pea: 34%
Coconut oil	0.61	16%	Coconut: 19%
Canola oil	0.31	1%	Canola/Rapeseed: <1%
Sunflower oil	0.24	1%	Sunflower Seed: 1%
Cocoa butter	0.04	2%	Cocoa Beans: 2%

Ingredient	Projected Demand (MMT)	Share of Projected Global Ingredient Production	Share of Projected Global Raw Commodity Production
Soy protein concentrate	2.43	Зx	Soy: 2%
Soy protein isolate	0.01	1%	
Wheat gluten	1.48	98%	Wheat: 2%
Pea protein	0.74	10x	Pea: 34%
Coconut oil	0.61	16%	Coconut: 19%
Canola oil	0.31	1%	Canola/Rapeseed: <1%
Sunflower oil	0.24	1%	Sunflower Seed: 1%
Cocoa butter	0.04	2%	Cocoa Beans: 2%

Ingredient	Projected Demand (MMT)	Share of Projected Global Ingredient Production	Share of Projected Global Raw Commodity Production
Soy protein concentrate	2.43	3x	Soy: 2%
Soy protein isolate	0.01	1%	
Wheat gluten	1.48	98%	Wheat: 2%
Pea protein	0.74	10x	Pea: 34%
Coconut oil	0.61	16%	Coconut: 19%
Canola oil	0.31	1%	Canola/Rapeseed: <1%
Sunflower oil	0.24	1%	Sunflower Seed: 1%
Cocoa butter	0.04	2%	Cocoa Beans: 2%

Ingredient	Projected Demand (MMT)	Share of Projected Global Ingredient Production	Share of Projected Global Raw Commodity Production
Soy protein concentrate	2.43	3x	Soy: 2%
Soy protein isolate	0.01	1%	
Wheat gluten	1.48	98%	Wheat: 2%
Pea protein	0.74	10x	Pea: 34%
Coconut oil	0.61	16%	Coconut: 19%
Canola oil	0.31	1%	Canola/Rapeseed: <1%
Sunflower oil	0.24	1%	Sunflower Seed: 1%
Cocoa butter	0.04	2%	Cocoa Beans: 2%

Exploring opportunities in emerging protein sources

Protein	Protein Concentration	PDCAAS	Allergen Risk	Commercial Stage	Flavor	Functionality	Cost (/kg protein)	Global Crop Volume (MMT)		
Soy										
Pea										adand
Wheat	•	•	•			•		•	L	egena
Canola	•		•					•		
Chickpea		•	•				•			Excellent
Fava Bean	•		•				•			
Lentil			•	•			•			Good
Lupin	•		•		•					01/
Mung Bean			•				•	•	•	UK
Navy Bean				•				•		1
Peanut			•						•	LOW
Sunflower							•			_
Almond			•			•	•			Poor
Corn		•	•			•	•			
Oat	•					•				
Potato	•		•					•		
Quinoa	•			•	•			•		
Rice	•		•							
Sorghum	•			•		•				

Note: For some proteins, certain metrics are not available Source: The Good Food Institute research, Plant Protein Primer

Sidestream utilization can improve the economic viability of existing ingredients

Forging partnerships among ingredient suppliers and manufacturers

Commercial proteins are complex mixtures—properties depend on source and process.

Processing can also influence protein functionality via **denaturation**, **hydrolysis**, **modification**, and **cross-linking**.

Investing in new technologies for fat production and incorporation in plant-based meat

MYCORENA

Mycorena unveiled a new fungi fat ingredient that releases flavor in a similar way to animal-based fats, during the cooking process and the eating experience. Their new fat could replace coconut or other vegetable based oils currently used in alternative meat products.

Yali Bio, which recently came out of stealth mode, is creating fats tailored to the needs of the end product formulation of meat, eggs, or dairy.

nourish Ingredients

Nourish Ingredients raised \$11M to scale development of their fermentation process that recreates the molecular structure of animal fats in order to mimic proteins such as seafood, pork, beef and chicken products.

Cultivated Biosciences announced they are leveraging fermentation to develop a functional fat ingredient from oleaginous yeast that can be used as a high fat component of plantbased dairy formulations.

Melt&Marble raised \$750,000 in seed funding to create bioidentical fats via precision fermentation. They plan to create an entire range of fats for use in alternative proteins

Where do we go from here?

- We welcome feedback and data! This analysis serves as the first iteration of a model that will increase in complexity and accuracy as additional data are added. Next steps include:
 - Additional plant-based meat manufacturing strategies to increase the model's robustness and real-world applicability.
 - Adding fermentation and cultivated meat production into the model.
- Soaring demand for plant-based meat will continue to place substantial supply constraints on the industry. Ingredient and end-product production capacity will likely be the rate-limiting links of the plant-based meat supply chain in the coming decade. Here's what we hope to see:
 - **Innovation:** Without rapid advances in greater processing capacity and new ingredient solutions, there will be substantial bottlenecks for key ingredients, including plant protein concentrates and non-animal sources of saturated fats.
 - **Private capital:** This need for greater capacity and infrastructure, including to manufacture plant-based meat end products, will require substantial capital from financiers like banks, PE funds, and institutional investors, not just early-stage VCs.
 - **Public investment:** When blended with private sector funding, public funding can incentivize bold supply chain innovations and capacity-building, enabling the alternative protein sector to grow as fast as consumer demand does.

Increased investment is a key driver of the alternative protein industry

- To speed up the flywheel, we need to optimize:
 - Public, private, and philanthropic investment
 - Research and technological commercialization
 - Startup, manufacturer, and supplier scaling
- All with a focus on lower prices and improving end-product quality and lowering prices

Q&A

Download this report at:

gfi.org/resource/ anticipating-plant-based-meatproduction-requirements-2030/

For more resources, sign up for GFI's Alt Protein Opportunity newsletter:

gfi.org/insider

Contact the corresponding author at **ryand@gfi.org** with any questions!